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Accurate and complete analysis of genome variation in 
large populations will be required to understand the role of 
genome variation in complex disease. We present an analytical 
framework for characterizing genome deletion polymorphism 
in populations using sequence data that are distributed across 
hundreds or thousands of genomes. Our approach uses 
population-level concepts to reinterpret the technical features 
of sequence data that often reflect structural variation. In the 
�000 Genomes Project pilot, this approach identified deletion 
polymorphism across �68 genomes (sequenced at 4× average 
coverage) with sensitivity and specificity unmatched by other 
algorithms. We also describe a way to determine the allelic 
state or genotype of each deletion polymorphism in  
each genome; the �000 Genomes Project used this approach  
to type �3,826 deletion polymorphisms (48–995,664 bp) at 
high accuracy in populations. These methods offer a way to 
relate genome structural polymorphism to complex disease  
in populations.

Describing genome variation in populations and identifying the 
 alleles that influence complex phenotypes will require sequencing 
thousands of genomes. Genome sequencing will therefore increas-
ingly be performed in clinical and reference cohorts of substantial 
size1. An important challenge will be to identify how genomes vary 
at large as well as fine scales.

Short sequence reads can reflect large variants in several ways: indi-
vidual reads can span a variant’s breakpoints2,3; molecularly paired 
sequences can flank a variant4–6; and read depth is influenced by the 
underlying copy number of a genomic segment7–9 (Fig. 1). However, 
identifying large variants from short sequence reads is error prone: 
molecular libraries contain millions of chimeric molecules that mas-
querade as structural variants; read depth varies across the genome in 
ways that vary among sequencing libraries; and alignment algorithms 
are misled by the genome’s internal repeats. Illustrating this challenge, 
the 1000 Genomes Project found that even for deeply sequenced 
(greater than 30×) individual genomes, 14 published and new meth-
ods for analyzing deletions generated false discovery rates (FDRs) 
of 9–89%, such that additional experiments (array CGH, PCR) were 
required to identify the real variants among the false discoveries1,10.

These difficulties are potentially more severe in sequence data that 
are generated on a population scale. As more genomes are sequenced, 
false discoveries accumulate more quickly than real variants do, 
as many real variants are simply rediscovered in more genomes.  
In addition, in population-based studies, investigators may use lower 
sequence coverage (across many more genomes) than is used for 
deeply sequenced personal genomes, as the resulting large sample 
size will allow studies to ascertain more low-frequency alleles and 
increase the power for relating variation to phenotype. The high false 
discovery rate of structural variation algorithms in deeply sequenced 
individual genomes1,10 has suggested that the problem of accurate 
inference at lower coverage will be challenging.

We hypothesized, however, that sequencing at a population scale 
will also enable new kinds of analytical approaches. True structural 
alleles might leave additional footprints in population-scale data 
(Fig. 1). Segregating alleles distinguish some genomes from others, 
substitute for alternative structural alleles, give rise to discrete allelic 
states in a diploid genome, are often shared across genomes and segre-
gate on haplotypes with other variants11,12. Here we show that analysis 
of structural variation in populations is made far more accurate and 
powerful by apprehending patterns at a population level.

We present the results of an analysis applying these principles 
to map deletion polymorphism in the genomes of 168 individuals 
sequenced at low coverage (2×–8× paired-end sequencing on the 
Illumina platform) in the 1000 Genomes Project pilot. We focus on 
deletion polymorphism, the most numerous and validated class of 
structural variation, though the population-level analytic concepts 
we describe can also be used to analyze other forms of genome vari-
ation. We show that population-aware analysis enables structural 
inference with high accuracy. Our approach can identify an unprec-
edented number of deletions with few false discoveries, ascertain 
variants down to sub-kilobase sizes and low allele frequencies, local-
ize breakpoints at high resolution, determine genotype (allelic state) 
at each locus in each genome and create a high-resolution map of 
linkage disequilibrium (LD) between single-nucleotide and struc-
tural alleles. The resulting dataset has been validated by independent 
experiments. It comprises a substantial fraction of the deletion loci 
and all of the structural variation genotype data released by the 1000 
Genomes Project pilot1.
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RESULTS
Coherence around shared alleles
Most of the variation in any human genome arises from alleles shared 
with other humans. In a sequencing study, allele sharing can arise 
in two ways. In studies of reference populations such as the 1000 
Genomes Project, alleles that segregate in the general population at an 
appreciable frequency (>1% in the 1000 Genomes Project pilot) will 
generally be shared among multiple individuals sequenced. In medical 
sequencing studies that sequence many individuals with a particular 
phenotype, enrichment for high-risk alleles may cause such alleles 
to be present multiple times in a cohort of affected individuals, even 
when such alleles are rare in the general population.

We therefore sought to exploit shared variation wherever it exists, 
without filtering out rare, singleton variants that were private to 

 individual genomes. We reasoned that making 
use of allele sharing would particularly increase 

power in low-coverage, population-scale sequencing, in which the 
 evidence for a new allele in the data from any one genome may be 
insufficient to identify that variant with high confidence.

We applied this allele-sharing principle to increase the power 
to ascertain deletion alleles from discordant read pairs, which are 
paired-end reads that map to genomic locations that are unexpectedly 
far apart given a molecular library’s insert size distribution4,6,13. 
Because the construction of molecular libraries produces millions  
of chimeric molecules (Fig. 2a), most such read pairs do not arise 
from real structural variants. We identified sets of discordant  
read pairs, each set containing read pairs from 1–144 of the 168 
genomes, that were ‘coherent’ in the sense that all read pairs in a 
set could have arisen with high likelihood from the same deletion 
allele (Fig. 2b and Online Methods). Some 89% of the resulting 
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Figure 2 Identifying coherent sets of aberrantly 
mapping reads from a population of genomes. 
(a) Millions of end-sequence pairs from 
sequencing libraries show aberrant alignment 
locations, appearing to span vast genomic 
distances. Almost all of these observations 
derive not from true structural variants but 
from chimeric inserts in molecular sequencing 
libraries. Data shown are paired-end alignments 
on chromosome 5 from 41 initial genome 
sequencing libraries from the 1000 Genomes 
Project. (b) A set of ‘coherently aberrant’ 
end-sequence pairs from many genomes. At 
this genomic locus, paired-end sequences 
(sequences of the two ends of the inserts in a 
molecular library) fall into two classes: (i) end-
sequence pairs that show the genomic spacing 
expected given the insert size distribution of 
each sequencing library, such as the three-read–pair alignments for genome NA07037; and (ii) end-sequence pairs that align to genomic locations 
unexpectedly far apart but which relate to their expected insert size distributions by a shared correction factor (red arrows). A unifying model in which 
these eight read pairs from five genomes arise from a shared deletion allele (size of red arrows) converts all of these aberrant read pairs to likely 
observations. In the right panel, the black tick marks indicate genomic distance between left and right end sequences; the black curves indicate insert 
size distributions of the molecular library from which each sequence-pair was drawn.
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Figure 1 A population-aware analytical framework 
for analyzing Genome STRucture in Populations 
(Genome STRiP). (a) Population-scale sequence 
data contain two classes of information: technical 
features of the sequence data within a genome 
and population-scale patterns that span all the 
genomes analyzed. Technical features include 
breakpoint-spanning reads2,3, paired-end 
sequences4–6 and local variation in read depth 
of coverage7–9. Genome STRiP combines these 
with population-scale patterns that span many 
genomes, including: the sharing of structural 
alleles by multiple genomes; the pattern of 
sequence heterogeneity within a population; the 
substitution of alternative structural alleles for 
each other; and the haplotype structure of human 
genome polymorphism. (b) Goals of structural 
variation (SV) analysis in Genome STRiP. ‘Variation 
discovery’ involves identifying the structural alleles 
that are segregating in a population. The power 
to observe a variant in any one genome is only 
partial, but the evidence defining a segregating 
site can be derived from many genomes at once. 
‘Population genotyping’ requires accurately 
determining the allelic state of each variant in 
every diploid genome in a population.
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sets included evidence from multiple genomes; the other 11% were 
supported by evidence from individual genomes.

Using coherence allowed our algorithm, Genome STRiP (Genome 
STRucture In Populations), to accumulate power across genomes 
without being misled by chimeric molecules or requiring multiple evi-
dentiary read pairs in any one genome. However, it became clear that 
coherence was an insufficient criterion: the number of large putative 
deletions (coherent clusters of read pairs spanning >10 kb) exceeded 
tenfold the number expected by extrapolation from the copy number 
variations (CNVs) discovered by tiling-resolution array comparative 
genomic hybridization (CGH) in a recent study12 of 40 of these same 
genomes (Supplementary Fig. 1), though this recent study had ample 
technical power to identify CNVs of this size. This indicated that 
additional criteria were necessary to distinguish real structural vari-
ants from artifacts.

Heterogeneity in populations
A true polymorphism creates ‘heterogeneity’ in a population in 
the sense that it is differentially present in the genomes of different 
individuals. We reasoned that, in population-scale sequencing, this 
principle could distinguish real variants from those molecular and 
alignment artifacts that can arise from any genome.

We analyzed how the evidentiary read pairs supporting each puta-
tive deletion allele were distributed across the 168 genomes sequenced 
(Fig. 3). For each putative deletion, we used a χ2 test to evaluate the 
deviation of the observed distribution from a null model in which each 
genome was equally likely (per molecule sequenced) to yield deletion-
suggestive reads from the locus (Fig. 3a,b). To evaluate the use of 
this statistic, we examined its distribution for a set of positive control 
 deletions (from ref. 12). The heterogeneity statistic yielded low P values 
for almost all of these positive control regions (Fig. 3c); by contrast, 
the distribution of P values for the ‘coherent’ clusters of sequence reads 
included thousands that appeared to arise from a uniform distribution, 

consistent with the presence of thousands of artifacts that can arise 
with similar probability from any genome (Fig. 3d).

We evaluated the properties of putative common deletions for 
which sequence data were ‘coherent’ but did not establish hetero-
geneity within the population. Many of these loci were flanked by 
homologous sequences that caused alignment algorithms to locate 
reads in the incorrect copy. Subsequent analysis of array-based copy 
number data confirmed that few of these putative deletions were 
real, and that the real ones generally passed our heterogeneity test. 
At other loci that lacked evidence for heterogeneity, we found almost 
no sequence support for the reference genome sequence, suggesting 
that the reference sequence is incorrect or represents a rare allele.

One consequence of the heterogeneity criterion is that although 
Genome STRiP evaluates the evidence from all genomes at once, it is 
more convinced by putative variants for which supporting data arise 
multiple times from the same genome(s) than by putative variants 
for which support arises from many genomes in a thinly distributed 
way. The heterogeneity test therefore becomes far more powerful at 
intermediate and high levels of coverage.

Allelic substitution
Because genome variation does not generally change the number of 
copies of a chromosome, alternative structural alleles at the same 
locus are considered ‘substitutes’. If structural allele 1 (SA1) and struc-
tural allele 2 (SA2) are inconsistent with each other—for example, 
if SA1 contains genomic sequence that is deleted in SA2—and both 
alleles are segregating in the same population, then there should be 
a negative correlation (across the genomes in a population) between 
evidence for SA1 and evidence for SA2. The nature of this molecular 
evidence need not be identical between SA1 and SA2, and this pro-
vides an opportunity to integrate multiple attributes of sequence 
data (such as read depth and read pairs) that have orthogonal  
error properties.

Figure 3 Evaluating the population-
heterogeneity and allele-substitution properties 
of population-scale sequence data. (a) At a 
candidate deletion locus, the distribution across 
genomes of ‘evidentiary reads’ (read pairs 
suggesting the presence of a deletion allele 
at a locus) (blue bars) is compared to a null 
model under which genomes are equally likely, 
per molecule sequenced, to give rise to such 
evidentiary reads (green curve). For the locus 
shown, the distribution of evidentiary reads 
across genomes differs from the null distribution 
(P = 1 × 10−4), confirming that evidentiary 
sequence data appears differentially within the 
population at this locus. (b) At another genomic 
locus, putative structural variation–supporting 
read pairs arise from many genomes but in a 
pattern that does not significantly differ from 
a null distribution based on equal probability 
per molecule sequenced. Subsequent assays 
confirmed that this is not a true deletion.  
(c) Distribution of a population-heterogeneity 
statistic (from a,b) for read-pair data at 
1,420 sites of known deletion polymorphism. 
(d) Distribution of the same population-
heterogeneity statistic from read-pair data at 45,000 candidate deletion loci nominated by read-pair analysis. (e,f) If a putative deletion is real,  
then genomes with molecular evidence for the deletion allele would be expected to have less evidence for the reference allele (‘allelic substitution’).  
A simple test of allelic substitution is to compare average read depth (across a putative deletion segment) between two subpopulations—the genomes 
with read-pair evidence for the deletion (blue curve) and the genomes lacking such evidence (black trace). The locus in e was subsequently validated  
as containing a real deletion; the locus in f was not. (g) Distribution of this ‘subpopulation depth ratio’ statistic (e,f) for sequence data at 1,420 sites  
of known deletion polymorphism. (h) Distribution of the same statistic for sequence data at 45,000 candidate deletion loci.
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For the putative deletions in the 1000 Genomes Project pilot data, 
we evaluated the relationship between the presence of read-pair 
evidence for a deletion allele and the magnitude of sequence-depth 
evidence for the reference allele (Fig. 3e,f). To motivate use of this 
criterion, we evaluated its behavior for a set of positive control dele-
tions (from ref. 12). Genomes with read-pair evidence supporting 
these deletions invariably had diminished average read depth across 
the putatively deleted genomic segment (Fig. 3g). However, the can-
didate deletions from read-pair alignments (even those with coherent 
sequence data) appeared to arise from a mixture of real deletions and 
many more loci at which read-pair and read-depth data were uncor-
related in the population (Fig. 3h).

Most putative deletions for which supporting sequence data were 
coherent and established heterogeneity still failed this allelic substi-
tution test and turned out be false discoveries. At many such loci, cryptic 
sequence polymorphisms (often small indels) had caused sequence 
reads to misalign to nearby, paralogous sequences (Supplementary 
Fig. 2). Another type of filtered site consisted of transposon insertion 
polymorphisms14,15 that were not on the reference genome sequence; 
reads from such insertions often aligned to nearby transposon-derived 
sequences, causing sequence data to falsely suggest the presence of 
large deletions across the intervening genomic segment.

We combined the principles of coherence, heterogeneity and sub-
stitution to infer the locations of deletion polymorphisms among the 

168 genomes sequenced (Online Methods). The relative influences 
of coherence, heterogeneity and substitution were optimized for this 
dataset, which consisted mostly of 36-bp to 50-bp paired-end reads 
and sequencing coverage of 2× to 8× per genome (Online Methods). 
We identified 7,015 putative deletion polymorphisms, 100–471,000 bp  
in size, with evidence for each deletion arising from 2–1,111 read 
pairs from 1–140 genomes (Fig. 4a–c). Of these 7,015 deletions, 63% 
were new relative to those discovered by tiling-resolution array CGH 
in the recent study discussed above12.

Sensitivity and specificity
The fundamental challenge in population-scale sequencing is to effi-
ciently discover genome variation while making as few false discoveries 
as possible. Although diverse methods for identifying structural variants 
have been described2–9, to date their sensitivity and specificity have not 
been measured on empirical, population-scale sequence datasets.

To evaluate the putative deletions discovered by ten algorithms 
(Supplementary Table 1) from population-scale sequence data, 
investigators from the 1000 Genomes Project assayed thousands of 
these putative deletions using array comparative CGH, hybrid SNP-
CNV arrays and PCR1,10. In array-based analyses of several thousand 
deletion calls, deletions identified by Genome STRiP showed an 
estimated FDR of 2.9% (ref. 1); this rate was confirmed (to within 
statistical sampling error) by independent PCR experiments on a 
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Figure 4 Deletion polymorphisms identified by  
Genome STRiP in low-coverage sequence data from  
168 genomes. (a) Size distribution. Sensitivity for large  
deletions (>10 kb) is similar to that of the array-based approaches  
applied in large, population-scale studies (red); sensitivity for deletions  
smaller than 10 kb is much greater. A strong peak near 300 bp arises from  
ALU insertion polymorphisms; a smaller peak near 6 kb arises from L1 insertion  
polymorphisms. Number of evidentiary sequence reads (b) and genomes (c) contributing  
to each deletion discovery in population-scale sequence data. We identified 1,033 of  
these deletions (14.7%) with evidentiary pairs from single genomes. (d) Specificity:  
false discovery rates of ten deletion discovery methods evaluated by the 1000 Genomes Project in the Project’s population-scale low-coverage sequence 
data. (e) Sensitivity: power of the same ten discovery methods in identifying known deletions as a function of the allele frequency of the deletion.  
(f) Localization of the breakpoints of a common deletion allele using read-pair data from many genomes. The difference between (i) the genomic 
separation of each read-pair sequence and (ii) the insert-size distribution of the molecular library from which is it drawn (Fig. 2b) allows a likelihood-
based estimate of deletion length from each read pair (blue curves). Combining this likelihood information across many genomes (black curve) allows 
fine-scale localization of the breakpoint. (g) Resolution of breakpoint estimates from Genome STRiP, as estimated using Genome STRiP confidence 
intervals (red) and comparison to molecularly established breakpoint sequences (blue). (h) Fine-scale localization of a structural variation breakpoint 
facilitates directed local assembly of the deletion allele from sequence data derived from many genomes.
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 randomly selected set of 100 deletion calls1. A composite FDR esti-
mate for Genome STRiP of 3.7% (obtained by applying the PCR-based 
FDR to all variants for which array-based data were uninformative) 
compared with rates of 5.9% for Spanner (DA Stewart, GT Marth) 
and 23–70% for the eight other approaches evaluated on low-coverage  
data1 (Fig. 4d). A total of 5,833 (83%) of the deletions predicted by 
Genome STRiP were explicitly validated using PCR, array data or 
breakpoint assembly10.

In addition to producing the most accurate predictions, Genome 
STRiP was also the most sensitive of the ten algorithms evaluated by 
the 1000 Genomes Project based on both of the following criteria:  
(i) discovery of the deletions identified in the highest-resolution 
array-based study12 (Fig. 4e) and (ii) the number of deletions explic-
itly validated in array- and PCR-based experiments1 (Supplementary 
Fig. 3). An alternative way of estimating sensitivity is to use a set 
of CNVs ascertained in just one individual, though this approach 
heavily weights common variants because the probability of a variant 
being present in any one genome is proportional to the variant’s allele  
frequency. Compared to three such individual-genome reference 
datasets, Genome STRiP was the most sensitive against two (those in 
refs. 13,16) and the second most sensitive against the third one (that 
in ref. 12, when downsampled to one person)10.

A particularly vexing and important challenge in low-coverage 
sequencing is to efficiently ascertain low-frequency alleles1. To eval-
uate sensitivity for low-frequency alleles, we used a gold-standard set 
of deletions that had been genotyped in these same 168 genomes to 
establish allele frequency12 and evaluated the power of structural vari-
ant discovery as a function of allele frequency (Fig. 4e). Genome STRiP 
was again the most sensitive of the ten algorithms—and even more so 
at the lowest allele frequencies—though it only partially ameliorated 
the weakness of low-coverage sequencing for detecting rare alleles 
(Fig. 4e). To assess how Genome STRiP might perform for rare alleles 
at higher levels of sequence coverage, we used the fact that the ‘low-
coverage’ genomes in the 1000 Genomes Project pilot are in fact a 
mixture of genomes with different levels of coverage, ranging from 
2× to 8× span coverage (Online Methods). Genome STRiP’s power to 
detect rare singletons (deletion alleles present only once among the 
surveyed genomes, according to genotype data in ref. 12) rose quickly 
with increasing sequence depth, from less than 10% in genomes with 
less than 2× coverage to more than 80% in genomes with more than 8× 
coverage (Supplementary Fig. 4). In the 8× genomes, Genome STRiP 
achieved a sensitivity comparable to the most sensitive high-coverage 
algorithm in deeply sequenced (greater than 30×) individual genomes, 
though Genome STRiP’s FDR was far lower (Supplementary Fig. 4).

Genome STRiP still showed incomplete sensitivity in absolute 
terms. When all ten discovery methods (including Genome STRiP) 
were used together, the union contained many more deletions1. The 
most complementary method2 is local-assembly based and identi-
fies more small (<300 bp) deletions; for Genome STRiP, sensitivity 
fell below 50% for deletions smaller than 300 bp (Supplementary 
Fig. 5). Given the above observations, a key direction for the evolu-
tion of Genome STRiP will be to increase sensitivity for rare and small 
structural variants. Ongoing technical advances will facilitate this: 
longer sequence reads (100+ bp) and gapped alignments17 will allow 
Genome STRiP to take advantage of breakpoint-spanning reads in the 
ab initio structural variant discovery step, increasing ascertainment 
of small and rare alleles.

Breakpoint localization
We estimated the breakpoint locations of common structural vari-
ants, generally at 1–20 bp resolution, by combining data across all 

the individuals determined to share a structural variant allele in 
 common (Fig. 4d–f). We estimated breakpoint locations at each locus 
by evaluating the likelihood of the sequence data (the aberrant but 
coherent read pairs from all genomes) given each potential breakpoint 
model, all observed read pairs and the insert size distributions of 
each library sequenced (Figs. 2b and 4f). The resulting confidence 
intervals were generally tight, particularly for common deletions, 
as each informative read pair contributed information (Fig. 4f,g). 
Comparison to validated breakpoints1 confirmed the accuracy of these  
predictions (Fig. 4g).

With this breakpoint localization and breakpoint-spanning reads 
from many genomes, it was often possible to assemble unmapped 
sequence reads into a precise breakpoint sequence (Fig. 4h). A com-
prehensive breakpoint assembly analysis was undertaken by the 1000 
Genomes Project1; in the genotyping analyses below, we use this larger 
breakpoint library and the complete set of deletions discovered by all 
algorithms in high- and low-coverage sequence data.

Genotyping structural polymorphism in populations
To evaluate the relationship between structural variation and phe-
notypic variation, studies will need to go beyond variation discovery 
(making lists of alternative structural alleles that are observed in at 
least one genome) to population genotyping (precisely determining 
the allelic state (or genotype) of every structural variant in every 
genome) (Fig. 1b).

Many sources of information in population-scale sequence 
data—paired-end alignments, read depth and breakpoint-spanning 
reads—could in principle each supply partial information about the 
allelic state of each structural variant in each genome. We reasoned 
that combining such information might enable a powerful way to 
genotype structural variants of all sizes, and we developed a Bayesian 
framework for integrating all of this information into a calibrated 
measurement of genotype likelihood (Fig. 5).

To utilize read depth, we normalized measurements of locus-
 specific read depth for each of the 168 genomes and then clustered 
these measurements in a Bayesian mixture model (Fig. 5b and Online 
Methods). Notably, genomes were clustered with, and therefore cali-
brated to, other genomes (Fig. 5b). We used the mixture model to 
estimate the relative likelihood of each potential underlying copy 
number (Fig. 5c).

To utilize breakpoint-spanning reads and read pairs, we aligned all 
unmapped reads to a breakpoint library that contained sequences of 
all alternative structural alleles identified by the 1000 Genomes Project 
pilot1,10. At each locus in each genome, we determined the number of 
sequence reads corresponding to the reference and deletion alleles and esti-
mated the likelihood that this combination of read counts and read pairs 
could arise from each possible structural variant genotype (Fig. 5d).

Our Bayesian framework combined these three sources of infor-
mation into an integrated measurement of the relative likelihood 
that the sequence data from each genome arose from each potential 
combination of structural allele at that locus (Fig. 5e and Online 
Methods). To assess the calibration of the resulting genotype like-
lihoods, we compared sequencing-based genotypes to CNV geno-
types from the largest array-based study12. The calibrated confidence 
of each sequencing-based genotype call matched the concordance 
of such genotypes with array-based genotypes (Supplementary 
Table 2). For small (<300 bp) deletions, only a minority of geno-
types could be inferred at high confidence; we therefore sought to 
extend genotype calling by drawing upon another population-based 
source of information, the haplotypes formed by SNPs and struc-
tural variants together.
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Figure 5 Determining the allelic state (genotype) of 13,826 deletions in 156 genomes. (a) Four of the 13,826 deletion polymorphisms analyzed, 
representing diverse properties in terms of size and alignability of the affected sequence. Gray vertical rectangles indicate a sequence that is repeat 
masked or otherwise non-alignable. The locus in the bottom row is an ALU insertion polymorphism. (b) Population-scale distribution of read depth 
across genomes at each of the deletion loci in a. For each locus, normalized measurements of read depth (across the deleted segment) from 156 
genomes were fitted to a Gaussian mixture model. Colored squares represent genomes for which genotype could be called at 95% confidence based on 
read depth. (c) Genotype likelihood from read depth. Each horizontal stripe (corresponding to 1 of the 156 genomes) is divided into three sections with 
length proportional to the estimated relative likelihood of the sequence data given each genotype model (blue, copy-number 2; green, copy-number 1; 
orange, copy-number 0). (d) Genotype likelihood based on evidence from read pairs (RP) and breakpoint-spanning reads (BR). At the third locus from 
top, the absence of an established breakpoint sequence limits inference to read pairs. (e) Genotype likelihood based on integrating evidence from read 
depth (RD), read pairs (RP) and breakpoint-spanning reads (BR). (f) Genotype likelihood based on integrating evidence from c–e with flanking SNP 
data in a population haplotype model. (g) Population-scale sequence data at each locus as resolved into genotype classes. Traces indicate average read 
depth for genomes of each inferred genotype. Orange and green rectangles indicate evidentiary read pairs and breakpoint-spanning reads, colored by the 
genotype determination for the genome from which they arise.
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Most of the common structural variants genotyped to date have been 
found to segregate on specific SNP haplotypes, reflecting the haplo-
type background on which each structural mutation occurred11,12. 
We reasoned that a population-genetic haplotype model, such as 
that embedded in imputation algorithms18–21, could help resolve the 
genotype uncertainty that remained for many genomes (Fig. 5e). We 
integrated the structural variant genotype likelihoods together with 
SNP genotypes in the same genomes22 into haplotype models using 
the BEAGLE software20 and used this to extend genotyping to more 
genomes (Fig. 5f). Intuitively, this used high-confidence genotypes 
to build models of the haplotypes segregating in a population, which 
were then used to resolve uncertainty about lower-confidence geno-
types. This approach yielded genotypes that were consistent with all 
features of the sequence data (Fig. 5g) and also with the haplotype 
structure of the population. We generated genotypes for 13,826 of 
the deletion polymorphisms (48–959,782 bp in size) identified by the 
1000 Genomes Project, with an average call rate of 94.1% (median 
99.4%) (Online Methods). The genotyped loci included 1,123 mobile-
element insertion polymorphisms, which have been refractory to 
genotyping by earlier, array-based methods. The remaining loci, for 
which we were unable to obtain high-quality genotypes, were mostly 
short deletions with less than 200 bp of uniquely mappable sequence 
and no assembled breakpoints.

To evaluate the accuracy of our genotype calls, we took several 
approaches. Across 1,970 common deletions for which high-quality 
genotype data existed (from ref. 12), concordance of our genotypes 
with the array-based data was 99.1% (98.9% for homozygous dele-
tions, 99.8% for homozygous reference allele and 95.6% for hetero-
zygous sites). Because this analysis included relatively few short 
deletions (<1 kb) due to the resolution of the array-based genotyping 
used for comparison, we evaluated the LD between our entire set 
of deletion genotypes and SNP genotypes from the same genomes. 
The LD properties of the full set of deletions (Supplementary Fig. 6 
and Supplementary Table 3) closely matched the known LD proper-
ties of SNPs23 and multi-kilobase deletions11, a relationship that was 
extremely unlikely to arise by chance or in data with a high genotyp-
ing error rate.

These data comprise the structural variation genotype data release 
of the 1000 Genomes Project pilot1.

DISCUSSION
We have described a new analytical framework for analyzing sequence 
data that arise from a large number of genomes. Our results show that 
reinterpreting the technical features of sequence data at a population 
level improves the quality and extends the power of inferences from 
sequence data. There are in principle many more ways in which these 
ideas could be combined with technical features of sequence data 
(Fig. 1) to ascertain and accurately type other forms of genome vari-
ation in populations.

We envision several ways in which our approach will be used. 
One will be to construct maps of the genome polymorphism that 
segregates in populations. Such populations will include the human 
reference populations being analyzed in the 1000 Genomes Project, 
other human populations such as population isolates, and popula-
tions drawn from other species. Genome STRiP’s ability to discover 
polymorphisms efficiently and accurately and to produce accurate 
genotypes—the substrate for haplotypes, measurements of allele  
frequency and population genetic analysis—will increase the utility 
of genome variation data resources.

Another application of Genome STRiP will be in studies that 
seek to uncover genome variation underlying complex phenotypes. 

Genome STRiP can be used in such studies in two ways. First, Genome 
STRiP can uncover structural alleles that are present among individu-
als with a particular phenotype but which are rare in the general popu-
lation and therefore absent from resources such as the 1000 Genomes 
Project dataset. The low-coverage 1000 Genomes Project data ana-
lyzed here presented a more stringent test than will be presented by 
most disease studies, many of which will use intermediate or higher 
levels of sequence coverage that support greater sensitivity for rare 
variants. Second, Genome STRiP can be used to accurately determine 
the allelic state or genotype of each variant in each genome analyzed, 
allowing variation to be accurately correlated with phenotypes. The 
13,826 deletion polymorphisms for which Genome STRiP produced 
genotypes here exceeds tenfold the number of CNVs genotyped in our 
earlier efforts to develop hybrid SNP-CNV arrays for genome-wide 
association studies11.

For common deletion alleles, many relationships to human 
phenotypic variation can be identified immediately by analyzing 
genome-wide association data together with the LD relationships 
identified here. Such relationships could be identified through 
 tagSNPs (Supplementary Table 3) or imputation18–20. To assess the 
potential yield of such approaches, we identified 70 reported pheno-
type-SNP associations (involving 56 unique phenotype-CNV pairs) 
that appear to be in LD (r2 > 0.8), with one or more of these variants 
(Supplementary Table 4) extending earlier efforts12,24,25 that have 
identified 14 such relationships at this r2 threshold.

We have described ideas that could form the basis for new kinds 
of analytical approaches as sequencing-based studies are extended 
to large populations. Together with methods for analyzing single-
nucleotide variation and small indels, these approaches will help 
realize the scientific potential of sequence data that are generated at 
a population scale.

URLs. 1000 Genomes Project, http://www.1000genomes.org/; 
Genotypes generated by Genome STRiP, ftp://ftp-trace.ncbi.nih.gov/
1000genomes/ftp/pilot_data/paper_data_sets/; GenomeSTRiP web site, 
http://www.broadinstitute.org/gsa/wiki/index.php/Genome_STRiP.

METHODS
Methods and any associated references are available in the online 
 version of the paper at http://www.nature.com/naturegenetics/.

Note: Supplementary information is available on the Nature Genetics website.
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ONLINE METHODS
Sequence data requirements. Genome STRiP requires paired-end sequence 
data that is generated from at least ten genomes at high, low or intermediate 
levels of sequence coverage.

Sequence data used. Structural variation discovery was performed using the 
low-coverage Illumina sequence data for 168 individuals from the 1000 Genomes 
Project, including six higher-coverage genomes down sampled to approximately 
4× coverage for one HapMap CEU and one YRI trio. Two genomes were excluded 
due to data quality issues. The average genome-wide sequence coverage from the 
mapped Illumina data ranged from 0.8× to nearly 7× across different genomes, 
with 16 genomes sequenced at 2× or less average coverage. The ‘span coverage’ 
—the amount of sequence physically flanked by paired-end reads (a better mea-
surement of power for structural-variation methods that utilize paired ends, as 
Genome STRiP does)—ranged from 0.8× to nearly 9×. Of the 168 genomes, 24 
had no paired-end data, which reduced the effective size of our discovery popula-
tion to 144 genomes. Sequence reads were aligned by the 1000 Genomes Project 
to the hg18 reference human genome using the MAQ alignment algorithm26. We 
reprocessed the data with Picard MarkDuplicates to achieve uniform removal of 
potential molecular duplicates.

Coherence and clustering. Candidate deletions were first identified as 
genomic clusters of at least two read pairs that were each ‘aberrant’, in the 
sense that the left and right read aligned to the genome with unlikely (exces-
sive) spacing, based on the empirical insert size distribution for each read 
group (corresponding to one sequencing lane). Each insert size distribution 
was characterized by the median value and a variance estimate (robust stand-
ard deviation, RSD) calculated as half the width of the middle 68.2% of the 
distribution. Median insert sizes ranged from 108 to 469 bp (median 163 bp) 
with RSD values ranging from 3% to 34% (median 11%) of the median insert 
size. Read pairs were used for clustering if they had correct orientation, a 
MAQ mapping quality of at least ten on both ends and if the nominal insert 
size (measured by mapping to the reference genome) exceeded the median 
expected insert size by at least ten RSD. This threshold was motivated by the 
extremely large size of the datasets analyzed.

Clusters of aberrant read pairs were formed using a connected components 
algorithm. Two read pairs were considered connected if it was possible for 
them to share a breakpoint location such that the fragment length implied by 
the shared breakpoint was within the lower ~99% (median + 2.33 RSD) of both 
insert size distributions. Note that these criteria involve an implicit estimate 
of pairwise coherence.

After read-pair clustering, coherence was evaluated at the cluster level by 
first determining the most likely deletion length (dopt) that would explain the 
spacing and location of the read pair alignments based on their insert size 
distributions (Supplementary Note).

Using dopt, we calculated an ‘incoherence’ metric FC(dopt) where 
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for the cluster C of read pairs, where ξp is the empirical insert size distribution 
of the library of molecules from which read pair p is drawn.

This metric captures the degree to which a deletion event of length dopt 
would explain the observed cluster of read pairs. We tested by simulation the 
deviation of this metric from the null model
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where u is uniformly distributed.

Assessment of population heterogeneity. To measure the heterogeneity in the dis-
tribution of evidence for each candidate deletion, we counted the number of eviden-
tiary read pairs observed in each genome and then computed a χ2 test statistic
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where Oi is the observed number of evidentiary read pairs for genome i, and Ei is 
the expected number of evidentiary read pairs under a null model in which each 

genome is equally likely (per molecule sequenced) to produce an evidentiary 
read pair. Ei was calculated based on the genome-wide coverage depth and 
empirical insert size distribution of the reads for genome i. We estimated a  
P value for this test statistic at each locus by Monte Carlo simulation.

Assessment of allelic substitution. An allelic substitution statistic was calcu-
lated for each candidate deletion by comparing average read depth (across the 
putatively deleted segment) for genomes containing evidentiary read pairs that 
supported this putative deletion (group A) to average read depth for genomes 
lacking such evidentiary read pairs (group B). A depth ratio DR was calculated 
as DA/DB, where DA is the depth of group A genomes and DB is the depth of 
group B genomes. We additionally tested whether the numbers of reads (at 
the deletion versus elsewhere in the genome) differed between group A and 
group B genomes using a 2 × 2 contingency table χ2 test on the number of 
reads in each category.

Integration of coherence, heterogeneity and substitution criteria. For 
identifying deletions in the 1000 Genomes Project pilot data, we evaluated 
different combinations of thresholds based on the metrics described above; 
our evaluation criteria included the ability to ascertain known, positive-con-
trol structural variants (from ref. 12) and homozygosity for array-based SNP 
genotypes (from ref. 22). We produced our call set for the 1000 Genomes 
Project pilot by applying the following thresholds: incoherence metric > 0.01; 
substitution P value < 0.01; depth ratio ≤ 0.63 or depth ratio ≤ 0.8 and hetero-
geneity P value < 0.01; and median normalized read depth of samples with 
observed evidentiary pairs < 1.0 (this last filter was used to remove calls in 
regions of unusually high sequence coverage across many samples). In general, 
the optimal choices of parameters and thresholds for this step in Genome 
STRiP analysis will be a function of the sample size, sequence coverage, read 
length and insert size used in a study and should therefore be optimized for 
each study using a gold standard structural variant dataset (we used the data 
from ref. 12; future studies may wish to use the much larger dataset from the 
1000 Genomes Project pilot1) and the expectation of a realistic number of 
new discoveries.

Evaluation of accuracy (specificity). Experimental evaluation of structural 
variant discovery datasets was performed by a group of investigators for the 
1000 Genomes Project and is described in detail in Supplementary Note  
and refs. 1,15.

Evaluation of sensitivity. We evaluated sensitivity using multiple reference 
datasets to better understand the relationship of sensitivity to allele frequency 
and deletion size. (i) In Figure 4e, which shows how sensitivity relates to allele 
frequency of the underlying structural variant, we used the largest array-based 
copy number dataset for which genotype (and therefore allele-frequency) 
information are available12. (ii) In Supplementary Figure 4, which shows 
how sensitivity relates to the size of the underlying deletion, we used a refer-
ence dataset (from ref. 15) that was enriched for small deletions (<1 kb) and 
called most sub-kilobase variants at basepair resolution; these data consisted 
of deletions identified from a single genome (NA12156) by earlier analyses of 
fosmids, capillary sequence traces and tiling-resolution array CGH. Consistent 
with analyses of SNP-discovery sensitivity in reference 1, we considered the 
genomes as a set and did not require that the 1KG discovery arise specifically 
from NA12156. In these analyses, we considered a reference variant ‘discov-
ered’ if a callset variant overlapped with it. (iii) In Supplementary Figure 3, 
which shows how FDR relates to the total number of experimentally validated 
discoveries from each method, we used data on the number of variants (pre-
dicted by each sequencing-based method) that validated at high stringency 
by array-based analysis, PCR or assembly of a breakpoint sequence; the raw 
data are reported in Supplementary Table 8 of reference 1.

Genotyping. Genotyping of deletion polymorphisms was attempted for 
22,025 loci discovered by the 1000 Genomes Project. Genotyping was 
 performed on loci discovered in both high-coverage and low-coverage 
sequencing and was not limited to structural variants discovered by 
Genome STRiP. Genotyping was performed using the low-coverage Illumina 
sequencing data from the 1000 Genomes Project for 168 individuals, 
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including downsampled data at approximately 4× coverage for the CEU 
and YRI trios. Data curation and preprocessing steps were the same as for 
the sequencing data used for discovery, as described above.

Input to genotyping in Genome STRiP consisted of (i) a list of putative 
deletion loci with optional confidence intervals on the breakpoint locations 
and (ii) a breakpoint sequence for each alternate structural allele, where avail-
able. Genotypes for each individual were determined by first calculating geno-
type likelihoods from three different sources of evidence from sequencing 
data (read depth, discordant read pairs and breakpoint-spanning reads, each 
described in subsequent sections) and then by combining these likelihoods 
into a joint initial likelihood for each individual. Genotyping was performed 
independently for each putative deletion in the 1000 Genomes Project callset, 
even when there were other physically overlapping deletion calls. BEAGLE was 
used to combine these initial likelihoods with genotypes from nearby SNPs 
to arrive at final genotypes that benefit from taking into account LD between 
the deletions and nearby SNPs.

Utilization of read depth in genotyping. For each deletion locus, the number 
of sequenced fragments falling within the deleted region was counted for each 
sample, requiring a minimum mapping quality of ten, and correcting for the 
‘effective length’ of the deletion locus. The effective length excludes all base 
positions where less than half of the overlapping 35-mers were not unique (as 
defined by an alignability mask generated by the 1000 Genomes Project1). 
The expected number of fragments for each sample was estimated based on 
the genome-wide sequencing coverage, the alignability mask and the effective 
length of the deleted region.

The read depth within the deletion locus was used to estimate the copy 
number at the locus using a constrained Gaussian mixture model applied to the 
observed and expected read counts for each sample (Supplementary Note). 
Based on the estimated model parameters and the observed read depths, we 
calculated the relative likelihood of each copy number class for each genome 
and converted this to genotype likelihoods (for example, copy number zero 
corresponds to a homozygous deletion).

Utilization of discordant read pairs in genotyping. Discordant read pairs that 
spanned each deletion were used when the strand orientation was normal and 
the fragment length implied by the deletion was within the median expected 
insert size + 3 RSD. Discordant read pairs were not used as evidence of the 
alternate allele if they had a plausible alternative mapping (≤0.25 mismatches 
per base after performing a quality-aware Smith-Waterman realignment) to 
the reference for either end of the read that would correct the nominal insert 
size to within the median expected insert size ± 5 RSD. We used these stringent 
filters to select only read pairs that were (i) highly likely under the model of an 
intervening deletion and (ii) unlikely to arise from misalignment, one impor-
tant source of artifactual discordant read pairs that we were able to mitigate. 
Likelihoods from discordant read pairs were generated based on the mapping 
quality and the likelihood of the nominal insert size given the original mapping 
in a model that implicitly made copy number 0 or 1 equiprobably much more 
likely than copy number 2 given a discordant pair observation.

Utilization of breakpoint-spanning reads in genotyping. Genotyping made 
use of a library of assembled breakpoints for 10,455 loci generated as part of 
the 1000 Genomes Project1,15 by the algorithms TIGRA (L. Chen) and Pindel2. 
A non-redundant set of breakpoint sequences was extracted from this library 
and preprocessed to remove any alleles with inconsistent annotations and any 
mismatches to the reference sequence in the flanking regions of the alternate 
alleles. We also performed an automated procedure to detect inconsistencies in 
the mapping of the alternate allele assemblies to the breakpoints by testing whether 

small shifts in the alignment to the reference sequence reduced the number of 
mismatches. Assemblies with inconsistent annotations were not used. Reads from 
the unmapped BAM files from the 1000 Genomes Project were aligned to these 
alternate alleles using BWA17 version 5.5 with default parameters.

For genotyping, we used any read that aligned across a breakpoint junction 
and would discriminate between the alternative alleles. Breakpoint-spanning 
reads were ascertained from three sources: (i) alignments to the breakpoint 
locations in the original BAM files, which were realigned against the alternate 
allele for comparison; (ii) unmapped mates of paired reads that aligned near 
the breakpoints, which were aligned against the alternate allele for compari-
son; and (iii) reads from the unmapped BAM files that aligned to the library 
of alternate alleles using BWA. The likelihoods for the three genotype classes 
(homozygous reference, heterozygote and homozygous alternate) for each read 
were determined based on the sum of base qualities of the mismatches to the 
reference and alternate alleles, the estimated mapping quality to both alleles 
and the insert size distribution for paired reads. We corrected for the refer-
ence having two deletion breakpoint junctions, whereas the alternate allele 
has only one, taking into account both sequence homology at the junction 
and read length.

Genotype likelihood estimation. The likelihoods from these three sources of 
evidence (read depth, read pairs and breakpoint-spanning reads) were com-
bined into joint initial likelihoods for the genotype of each sample. Likelihoods 
from breakpoint-spanning reads were computed only when an alternate allele 
sequence was available. Likelihoods from read depth were included only when 
the uniquely alignable (‘effective’) length of the deletion exceeded 200 bp.

To improve the genotype calls, the LD between the deletion events and 
nearby SNPs was used. The initial genotype likelihoods were combined with 
SNP genotype data from the International HapMap Project22 (for 156 of the 
168 samples for which SNP genotypes were available in HapMap Phase III, 
release 2) using BEAGLE20 3.1. The SNP genotypes were input into BEAGLE 
assuming a genotyping error rate of 0.1%. BEAGLE was run separately on each 
population (CEU, YRI and CHB+JPT). The trio parents and children were run 
separately. The BEAGLE output was converted back to normalized relative 
likelihoods of the three genotype classes for each genome.

Genotyped loci. A set of genotypable deletions for the 1000 Genomes Project 
was selected that met the following two criteria: (i) at least 50% of the genomes 
had a genotype call that was >95% confident and (ii) the genotype calls were 
in Hardy-Weinberg equilibrium in each of the three populations (P > 0.01, 
trio offspring excluded).

Overall, 10,742 of 15,893 deletion sites discovered in the low-coverage 
samples met these criteria, as did 6,317 of 11,248 sites discovered in the high-
coverage trios. This yielded 13,826 sites out of 22,025 after merging discoveries 
that were determined by the 1000 Genomes Project analysis to be redundant 
between the low- and high-coverage discovery sets. Our genotyping analysis 
suggests that some of the 1000 Genomes Project deletion calls are potentially 
redundant with, physically overlapping merged calls, as revealed by their 
yielding identical genotypes across the genomes analyzed; this reflects that 
these deletions were discovered by different algorithms with varying levels of 
resolution15 and that efforts in the 1000 Genomes Project pilot to combine 
potentially redundant calls from different algorithms were not completely 
successful. We have reported all supplementary data and statistics here in a 
way that is synchronized with the 1000 Genomes Project pilot datasets and 
analyses as reported in references 1,10.

26. Li, H., Ruan, J. & Durbin, R. Mapping short DNA sequencing reads and calling 
variants using mapping quality scores. Genome Res. 18, 1851–1858 (2008).
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