
HUMAN GENOMICS

Protein-coding repeat polymorphisms strongly shape
diverse human phenotypes
Ronen E. Mukamel1,2*†, Robert E. Handsaker2,3,4*†, Maxwell A. Sherman1,2,5, Alison R. Barton1,2,6,
Yiming Zheng2,3, Steven A. McCarroll2,3,4*‡, Po-Ru Loh1,2*‡

Many human proteins contain domains that vary in size or copy number because of variable numbers
of tandem repeats (VNTRs) in protein-coding exons. However, the relationships of VNTRs to most
phenotypes are unknown because of difficulties in measuring such repetitive elements. We developed
methods to estimate VNTR lengths from whole-exome sequencing data and impute VNTR alleles into
single-nucleotide polymorphism haplotypes. Analyzing 118 protein-altering VNTRs in 415,280 UK Biobank
participants for association with 786 phenotypes identified some of the strongest associations of
common variants with human phenotypes, including height, hair morphology, and biomarkers of health.
Accounting for large-effect VNTRs further enabled fine-mapping of associations to many more protein-
coding mutations in the same genes. These results point to cryptic effects of highly polymorphic
common structural variants that have eluded molecular analyses to date.

T
he human genome contains thousands
of variable number of tandem repeat
(VNTR) polymorphisms (1, 2), but the
effects of these polymorphisms on hu-
man phenotypes are largely unknown.

VNTRs are multiallelic variants at which a
nucleotide sequence, from seven to thousands
of base pairs long, is repeated several to
hundreds of times, with the number of re-
peats varying among individuals (fig. S1).
Extreme alleles of VNTRs have been im-
plicated in diseases including progressive
myoclonus epilepsy (3) and facioscapulo-
humeral muscular dystrophy (4). However,
because most VNTRs are invisible to single-
nucleotide polymorphism (SNP) arrays and
difficult to measure with short-read sequenc-
ing, they have not been considered in the
genotype-phenotype association studies that
have been central to recent work in human
genetics.
We hypothesized that exome-sequencing

data might contain unknown information
about VNTR lengths and that VNTR alleles
might segregate on specific SNP haplotypes,
enabling statistical imputation (5) in SNP-

phenotype datasets from hundreds of thou-
sands of people, such as participants in the
UK Biobank (UKB) (6).

Exploring the phenotypic effects of
coding VNTRs

We identified candidate VNTRs by scanning
the human reference genome for tandemly re-
peated sequences (7). For each repeat, we esti-
mated “diploid VNTR content,” the sum of
maternally andpaternally derived allele lengths,
in 49,959 exome-sequenced UKB participants
(8) bymeasuring numbers of reads that aligned
to the repeated sequence (7). We then used
surrounding SNPs to identify haplotypes likely
to have been coinherited from a recent com-
mon ancestor, enabling resolution of diploid
measurements into allele-specific contributions
and imputation of VNTR lengths into SNP-
haplotypes of 437,612 additional UKB partic-
ipants. We developed statistical algorithms to
perform such analysis on extended SNP haplo-
types for hundreds of thousands of individuals
using sibling identical-by-descent information
to benchmark accuracy and to optimize analy-
sis parameters (7). We focused subsequent
analysis on autosomal exon–overlapping re-
peats in 118 genes for which these measure-
ments exhibited cis heritability in sibling pairs
(table S1).
We applied this approach to identify rela-

tionships between coding VNTR alleles and
786 phenotypes (table S2) in up to 415,280 un-
related UKB participants (depending on phe-
notype) of European ancestry. This analysis
found 185 statistically significant associations
(table S3). To determine whether such associ-
ations were driven by VNTR length variation
rather than by other variants with which the
VNTRs were in linkage disequilibrium (LD),
we performed fine-mapping analyses (9) con-
sidering nearby genotyped and imputed var-
iants (6, 10). Because variation at most VNTRs

arises from three or more alleles, VNTR var-
iation was only partially correlated with
individual SNPs, enabling this analysis to dis-
tinguish VNTR from SNP effects.
Nineteen phenotype associations involving

five distinct VNTRs (Table 1, table S3, and fig.
S1) exhibited evidence [FINEMAP (9) posterior
probability >0.95] that VNTR length variation,
rather than nearby SNPs, drove genotype-
phenotype associations. For these five VNTRs,
we improved genotyping accuracy by incorpo-
rating additional information from within-
repeat variation or spanning reads to confirm
the associations [figs. S2 and S3 (7)].
These associations appeared to explain some

of the largest known GWAS signals for human
phenotypes, including height, serumurea, and
hair phenotypes, with some associations ex-
hibiting strength comparable to or exceeding
that of any single SNP in the genome.
Three VNTRswithin exons ofTENT5A,MUC1,

and TCHH had not previously been implicated
at these loci; a fourth (in ACAN) was recently
reported in parallel work (11). Analysis also
replicated an association between the length
of the KIV-2 repeat in LPA and lipoprotein(a)
concentration (12) [P = 4.4 × 10–(25,121), BOLT-
LMM (13)]. All five VNTRs were genotyped
and imputed accurately (root mean square
error ~1 repeat unit and/or R2 ≥ 0.7) accord-
ing to benchmarks using cross-validation
(fig. S4 and table S1) and the HGSVC2 long-
read sequencing dataset (figs. S5 to S9) (7, 14).

Fine-mapping of LPA variants influencing
lipoprotein(a) concentration

Complex genetics involving VNTRs and SNPs
at the same locus was revealed by analyzing
lipoprotein(a) concentration [Lp(a)], elevated
levels of which are a major risk factor for
coronary artery disease (15). Lp(a) is almost
completely heritable, with about half of its
population variance explained by a VNTR-
generated size polymorphism in the second
kringle-IV (KIV) domain of apo(a) (12). Each
KIV-2 repeat unit (~5.6 kb) spans two exons
of LPA, which together encode a 114-aa copy
of this domain. Longer alleles, those with more
copies of the encoded kringle repeat, are known
to associate with lower Lp(a) levels (12, 16),
reflecting retention of longer apo(a) isoforms
in the endoplasmic reticulum (17). In the UKB,
inheritance at the LPA locus explained most of
the variance in Lp(a) measurements [R = 0.93
in sibling pairs sharing both LPA alleles, con-
sistent with previous work (18)], with KIV-2
length explaining ~61% of this variance in a
nonparametric model.
To identify additional LPA variants that

mightmore completely explain Lp(a) variation
and to explore their interactions with KIV-2
length, we used individuals heterozygous for
either of two coding variants [combined mi-
nor allele frequency (MAF) = 0.05] that create
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null alleles that produce undetectable serum
Lp(a) (7). This approach created an effective
haploid model for Lp(a) and made it possible
to systematically identify and measure the
effects of Lp(a)–altering alleles (fig. S10). We
performed stepwise conditional analysis to
identify LPA sequence variants that associated
with low Lp(a) despite occurring on short- or
medium-length KIV-2 alleles that typically as-
sociate with higher Lp(a) levels (7).
These analyses identified associations with

17 protein-altering variants, each of which ap-
peared to greatly reduce Lp(a) (P < 1 × 10−17 for
each variant, Fisher’s exact test or linear reg-
ression, table S4); 43%of European haplotypes
were affected by at least one of these variants.
Six variants predicted to partially or fully abol-
ish constitutive splice sites and six missense
variants achieved the strongest associations
in 12 consecutive stages of stepwise analysis;
five additional rare (MAF <1%) coding var-
iants exhibited top or near-top associations in
further conditional analyses (Fig. 1A, fig. S11,
and table S4). The two variants with the largest
impacts on Lp(a) variation in the European
population (because of their high allele fre-
quencies; MAF = 13 and 21%) were variants
within the KIV-2 region that are computation-
ally predicted to impair splicing (19) of KIV-2
exon 2. One of these splice variants has been
experimentally validated (20). These variants
reduced Lp(a) by 85 and 89%, respectively,
when presentwithin a single KIV-2 repeat unit;
alleles carrying either variant on multiple re-
peat units within the VNTR produced nearly
undetectable Lp(a) (fig. S12). Fine-mapping
analyses identified three other common var-
iants (MAF = 14 to 28%), two in the 5′ untrans-
lated region (UTR) of LPA, which have both
been observed to regulate translational ac-
tivity (21, 22), and one missense variant. All
three variants associated with more modest

effects on Lp(a) levels across a broad range of
KIV-2 alleles (Fig. 1A and table S4).
The strong effects of the VNTR and SNPs

at LPA, the large sample size of UKB, and the
ability to chromosomally phase all of these
variants accurately made it possible to identi-
fy nonlinear and cis-epistatic effects at LPA.
Accounting for the effects of the 17 implicated
coding variants at LPA showed that the in-
verse relationship between KIV-2 length and
Lp(a) (12, 17) breaks down for very short (high-
protein-level) alleles (Fig. 1A). Throughout most
of the KIV-2 length range (12 to 24 repeats),
each one-repeat-unit decrease in KIV-2 length
resulted in a 37% increase in Lp(a) (Fig. 1A).
However, this effect was attenuated for alleles
with fewer than 12 repeats and appeared to
invert around eight repeats (P = 9.4 × 10−31,
linear regression; Fig. 1A and fig. S13). Ac-
counting for the nonlinear effect of KIV-2
length and for phase-resolved LPA sequence
variants explained 90% of the heritable var-
iance (83% of total variance) in Lp(a) [versus
~60% of total variance in earlier work (12, 23)].
Serum Lp(a) levels vary across populations

(12), with median measurements fourfold
higher among Africans than among Europeans,
but the reason for this cross-population var-
iation has been unclear. We found that this
variation was largely explained by population
differences in the allele frequencies of LPA
sequence variants (Fig. 1B). Elevated Lp(a) in
UKB participants of African ancestry (median
80.1 nmol/liter versus 18.5 nmol/liter in Euro-
peans) was primarily explained by the paucity
of alleles carrying variants that greatly reduced
Lp(a) (~13% of African alleles versus ~43% of
European alleles despite sufficient discovery
power in both populations) and the higher
frequency of the Lp(a)–increasing 5′ UTR var-
iant among African alleles (MAF = 46% versus
17% in European alleles for rs1800769; Fig.

1C). These allele frequency differences also
explained the apparent difference in shape
of the Lp(a)–KIV-2 curve in different popula-
tions (fig. S14).
The accuracy of genetically predicted Lp(a)

(R2 = 0.83 in Europeans) enabled insights into
epidemiological associations involving Lp(a).
We observed that the myocardial infarction
risk–increasing effect of higher Lp(a) (15, 24)
extends to extreme Lp(a) levels [odds ratio
(OR) = 3.1, 95% confidence interval (CI) = 1.9
to 5.2 for individuals with genetically pre-
dicted Lp(a) >400 nmol/liter; Fig. 1D]. By con-
trast, lower genetically predicted Lp(a) did not
associate with increased type 2 diabetes (T2D)
risk, suggesting that the 17% (SE 1%) lower
levels of Lp(a) observed in T2D patients rep-
resents reverse causation resulting from T2D
itself, T2D-related liver comorbidities, or T2D
medications (Fig. 1E, fig. S15, and table S5).

Human height is strongly affected by VNTRs
in ACAN and TENT5A

Human height associates with hundreds of
common alleles (25), generally with small ef-
fect sizes (<0.05 SDs). By contrast, size varia-
tion of a 57-bp (19-aa) repeat in theACAN gene
strongly associated with height (P = 1.7 × 10−234,
BOLT-LMM), with an effect size differential
of 0.49 SDs (SE 0.04), or 3.2 cm, between the
longest and shortest European alleles (Fig. 2).
This association, which appears to underlie
one of the first reported genetic associations
with height (26), was also observed in a par-
allel study using long-read sequencing in the
deCODE cohort (11). Here, analysis in the
larger, more diverse UKB cohort, which con-
tains double the range of allelic variation,
including a very short, six-repeat African allele
and European alleles with up to ~44 repeats
(Fig. 2, B and D), uncovered several additional
insights.
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Table 1. VNTRs within protein-coding sequences affect diverse human phenotypes. For each of five protein-altering VNTRs involved in phenotype
associations that passed stringent fine-mapping criteria, P values [in linear mixed-model analyses of N = 415,280 unrelated UKB participants of European
(EUR) ancestry] and estimated effect size ranges (across the longest and shortest alleles sufficiently common to be amenable to our computational analysis)
are listed for the most strongly associated phenotype.

Gene Cytoband Repeat
unit size

Repeat count
(EUR)

Protein domain
(effect)

Phenotype Effect range ± SE P value

LPA 6q25.3-q26 ~5.6 kb (114 aa,
two exons)

2–40 KIV (number) Lipoprotein(a)
concentration

5.1 ± 0.5 SD
(= 233 ± 23 nmol/liter)

4.4 × 10–(25,121)

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

ACAN 15q26.1 57 bp (19 aa) 13–44 Chondroitin
sulfate (size)

Height 0.49 ± 0.04 SD
(= 3.2 ± 0.3 cm)

1.7 × 10−234

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

TENT5A 6q14.1 15 bp (5 aa) 2–7 Unknown (size) Height 0.09 ± 0.01 SD
(= 0.6 ± 0.1 cm)

2.5 × 10−53

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

MUC1 1q22 60 bp (20 aa) 20–125 Extracellular (size) Serum urea 0.16 ± 0.01 SD
(= 0.22 ± 0.01 mmol/liter)

2.7 × 10−163

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

TCHH 1q21.3 18 bp (6 aa) 5–15 a-Helix rod (size) Male pattern
baldness score

–0.063 ± 0.006 SD 1.6 × 10−55

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .
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Height exhibited an approximately linear
relationship with length of the ACAN VNTR.
Consistent increasing effects were observed
across a series of at least nine distinct VNTR
allele lengths, resulting in an association sig-
nal (P = 1.7 × 10−234, BOLT-LMM) stronger than
that of any nearby variant, explaining 0.19%
of height variance among European-ancestry
UKB participants (Fig. 2, C and D). Moreover,
among the 7543 UKB participants of African
ancestry, the ACAN VNTR association was
nearly 50% stronger than the association of
any other variant in the genome (P = 5.2 ×
10−12 for the VNTR versus P = 1.4 × 10−8 for
the strongest SNP association) and explained
a much larger 0.60% of height variance, pri-
marily because of the greater VNTR length var-
iation (SD = 3.7 repeats versus 1.5 repeats in
Europeans; Fig. 2B). Imputation of the VNTR
association into height association statistics

from the African Ancestry Anthropometry Ge-
netics Consortium cohort (27) replicated these
results [with the VNTR explaining an estimated
0.42% of height variance; imputed P = 5.8 ×
10−40 versus linear regression P = 3.4 × 10−20

for the strongest SNP association genome-
wide; fig. S16 (7)].
Aggrecan, the protein encoded by ACAN, is a

component of the extracellularmatrix in growth
plate cartilage and is required fornormal growth
plate cytoarchitecture (28). The VNTR gen-
erates 2.4-fold size variation in aggrecan’s first
chondroitin sulfate domain (CS1), in which
amino acid residues are modified by long,
charged polysaccharide chains that endow
this extracellular matrix with key properties
including the ability to hold large amounts
of water (29).
As at LPA, incorporation of theACANVNTR

into genetic association analysis (by stepwise

conditional analysis) made it possible to iden-
tify additional genetic effects that are driven at
ACAN by two commonmissense SNPs (Fig. 2C
and table S6). These two missense SNPs, which
affect ACAN globular domains, had two of
the top three predicted deleteriousness scores
(30) (CADD = 23.1 for rs3817428 and 27.6 for
rs34949187) among common missense SNPs
in ACAN and were corroborated by Bayesian
fine-mapping (9) analysis (FINEMAP poste-
rior probability of causality >0.99). A com-
bined model including the VNTR and these
SNPs explained 0.33% of height variance in
Europeans.
Despite the strong effects of ACAN VNTR

alleles on height, neither end of the allelic
spectrum appeared to compromise ACAN func-
tion in any way detrimental to health. Whereas
loss-of-function mutations in ACAN cause
autosomal-dominant skeletal disorders (31),
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Fig. 1. Kringle IV-2 repeat
length variation and 23 LPA
SNPs together explain ~90% of
lipoprotein(a) heritability.
(A) Serum Lp(a) versus KIV-2
VNTR length in an effective-
haploid model of Lp(a) involving
24,969 LPA alleles (in exome-
sequenced UKB participants of
European ancestry) for which the
allele on the homologous chromo-
some was predicted to produce
negligible Lp(a) (<4 nmol/liter).
Colors indicate the 15 most com-
mon Lp(a)–modifying SNPs
identified by fine-mapping analysis
(full list in table S4). Curves
indicate parametric fits of Lp(a) to
KIV-2 length. Gray indicates alleles
not carrying any Lp(a)–modifying
SNPs; red, blue, and green are
carriers of a single common Lp
(a)–modifying SNP; large points
are mean Lp(a) among such
alleles in KIV-2 length bins. Error
bars indicate 95% CIs. Histograms
(top and bottom) show counts of
Lp(a) measurements outside of
the reportable range (<3.8 or
>189 nmol/liter) colored by
Lp(a)–modifying SNPs (7).
(B) Observed and predicted
median Lp(a) among individuals of
African (AFR; N = 893), European
(EUR; N = 42,162), South
Asian (SA; N = 954), and
East Asian (EAS; N = 156) ances-
try. (C) LPA allele frequencies
by ancestry. VNTR alleles in cis
with a large-effect Lp(a)–reducing
variant (respectively, the Lp(a)–increasing 5′ UTR variant rs1800769) are indicated in gray (respectively, red). (D and E) Myocardial infarction risk (D) and T2D
prevalence (E) versus measured or genetically predicted Lp(a). Error bars indicate 95% CIs.
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VNTR length variation did not associate at
Bonferroni significance with any disease in the
UKB (P > 3 × 10−4, logistic regression). A par-
ticipant homozygous for the short, six-repeat
allele (allele frequency = 1.2% among partic-
ipants with African ancestry) had no reported
musculoskeletal disease phenotypes.
A distinct coding VNTR in the TENT5A

gene (previously named FAM46A) consisting
of two to seven repeats of 15 bp also asso-

ciated with height (P = 2.5 × 10−53, BOLT-
LMM), with six VNTR alleles exhibiting
monotonically increasing effects (Fig. 2, E and
F). TENT5A, a poly(A) polymerase in which
multiple coding variants have been linked to
autosomal-recessive osteogenesis imperfecta
(32), polyadenylates and increases expression
in osteoblasts of the collagen genes COL1A1
and COL1A2 and other genes mutated in this
disease (33).

Kidney function phenotypes shaped by a
VNTR in MUC1
The MUC1 gene encodes a secreted (cell
surface–associated) protein (mucin 1) with
cell-adhesive and anti-adhesive properties.
MUC1 harbors a VNTR that contains 20 to
125 repeats (34) of a 60-bp (20-aa) coding
sequence that determines the length of a
heavily glycosylated extracellular domain.
Ultra-rare frameshift mutations within the
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Fig. 2. Lengths of protein-coding repeat polymorphisms in ACAN and
TENT5A associate with human height. (A) Genetic associations with height in
UKB participants of EUR (top; N = 415,280) and AFR (bottom; N = 7543)
ancestry. (B) ACAN VNTR allele length distributions. (C) Height association
statistics at ACAN in three consecutive steps of stepwise conditional analysis
(EUR N = 415,280). Large diamonds and squares indicate likely causal coding
mutations; colored dots are variants in partial LD (R2 > 0.1) with labeled variants.

Height phenotypes were adjusted for genetic predictions computed using the
rest of the genome (7). (D) Mean height of carriers (lines, left axis) and EUR
allele frequencies (histograms, right axis) of ACAN alleles defined by VNTR length
and missense SNP haplotype. Error bars indicate 95% CIs. Rare long alleles
(40 to 42 repeats) were grouped into one bin. (E) Height associations at TENT5A.
(F) Mean height and EUR allele frequencies for TENT5A VNTR alleles. Error
bars indicate 95% CIs.
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MUC1 VNTR cause autosomal-dominant
tubulointerstitial kidney disease (35). In our
analyses, length of the MUC1 VNTR asso-
ciated with several renal phenotypes (Fig. 3),
including serum urea (P = 2.7 × 10−163, BOLT-
LMM) and serum urate (P = 4.7 × 10−99,
BOLT-LMM). Longer VNTR alleles also as-
sociated with gout (P = 3.6 × 10−17, logistic
regression), a disease caused by excessive uric
acid crystallization in the joints.
The MUC1 VNTR length polymorphism ap-

peared to underlie some of the strongest, ear-
liest reported SNP associations with serum
urea and serumurate, two biomarkers of renal
function that otherwise have somewhat inde-
pendent heritability [genetic correlation = 0.25
(SE 0.01); Fig. 3, A and C]. For urea, the VNTR
exhibited the strongest association genome-
wide (matching that of a SNP on chromo-
some 5), explaining ~1% of heritable variance
(~0.2% of total variance) in Europeans and ac-
counting for nearly all of the association signal
at the MUC1 locus [previously reported as

MTX1-GBA (36); Fig. 3A]. For urate, the VNTR
also appeared to be the primary causal variant
at a locus previously reported as TRIM46 (37)
(Fig. 3C). LongerMUC1 alleles associated with
increasing levels of both serum urea and urate
across the VNTR length spectrum, with an in-
completely dominant effect on urea (P = 2.3 ×
10−20 for interaction, linear regression; fig. S17)
but an additive effect on urate (P = 0.56 for
interaction).
Associations with additional renal pheno-

types indicated a complex relationship be-
tweenMUC1VNTR length and kidney function
(Fig. 3, B and D). Long MUC1 alleles (>55 re-
peat units) increased the risk of gout (OR =
1.10; 95% CI = 1.08 to 1.13, P = 1.2 × 10−16,
logistic regression) and chronic tubulointer-
stitial nephritis (OR = 1.31, 95% CI = 1.09 to
1.57, P = 3.4 × 10−3, logistic regression), which
remained significant after correcting for 13 kid-
ney diseases tested. However,MUC1 VNTR al-
lele length did not associate with chronic kidney
disease (OR = 1.01, 95% CI = 0.99 to 1.04, P =

0.33, logistic regression) reported in 14,573 cases
and only weakly influenced glomerular filtra-
tion rate as estimated from serum creatinine
(beta = –0.19%, 95% CI = 0.11 to 0.28, for long
versus short alleles). Long MUC1 alleles asso-
ciated with modest reductions in red blood
cell counts (beta = –0.029 SD, SE = 0.002, P =
1.5 × 10−39, linear regression) and hemoglo-
bin levels (beta = –0.031 SD, SE = 0.002, P =
9.9 × 10−44, linear regression), possibly reflect-
ing an impact of reduced kidney function on
erythropoietin production.

TCHH VNTR strongly associates with
hair phenotypes

Repeat length variation in a coding VNTR in
TCHH associated strongly with male pattern
baldness (P = 1.6 × 10−55, BOLT-LMM). TCHH
encodes trichohyalin, a protein that associates
in regular arrays with keratin intermediate
filaments and confers mechanical strength to
the inner root sheath (38). The 18-bp VNTR
encodes part of a highly stabilized alpha-helix
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Fig. 3. MUC1 VNTR length associates with multiple renal phenotypes.
(A and C) Genetic associations with serum urea (A) and serum urate (C) at
MUC1 (top; orange dots indicate variants in LD with MUC1 VNTR length
(R2 > 0.1) and genome-wide (bottom); N = 415,280 UKB EUR participants.
(B and D) Mean phenotypes in carriers (B) or disease ORs (D) (lines,

left axis) and allele frequencies (histograms, right axis) of MUC1 VNTR
alleles. VNTR alleles were stratified into three groups for phenotype
analyses: short (<55 repeat units), long (55 to 95 repeat units), and very
long (>95 repeat units). Error bars indicate 95% CIs. eGFR, estimated
glomerular filtration rate.
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that forms an elongated rod structure (39). A
rare nonsense mutation in TCHH has been
implicated in uncombable hair syndrome (40),
and a commonhaplotype containing the TCHH
missense SNP rs11803731 (encoding a leucine
to methionine substitution in TCHH) is by far
the strongest genetic determinant of hair curl
in individuals of European ancestry (41, 42). In
the UKB, the TCHH VNTR and rs11803731 ex-
hibited independent associations with male
pattern baldness (Fig. 4, A and B).
The TCHH VNTR appeared to be hyper-

mutable and was poorly tagged by all near-
by individual SNPs (R2 < 0.1), leading us to
wonder whether it might also contribute to
hair curl in a way invisible to genome-wide
association studies of this phenotype. Imput-
ing TCHH VNTR alleles into the TwinsUK co-
hort (43) (N = 3334 genotyped individuals with
hair curl phenotypes) revealed that the TCHH
VNTR appeared to be the human genome’s

second-largest contributor to hair curl varia-
tion genome-wide (explaining ~1% of variance;
P = 3.6 × 10−8, BOLT-LMM) after the missense
SNP rs11803731 in TCHH (which explained
~4% of variance; Fig. 4, C to F). LD between
the VNTR and rs11803731 further explained
an association reported near LCE3E (450 kb
upstream of TCHH) previously thought to be
independent of TCHH (42) (Fig. 4, C and D).

Discussion

These results identify many strong effects of
protein-coding VNTRs on human phenotypes.
Most were among the strongest effects of all
common variants identified for these pheno-
types to date and resolved previously mys-
terious genetic associations for multiple
traits. Incorporation of multiallelic VNTRs
into fine-mapping analyses also helped to
identify many more functional variants at
the same loci, revealing the importance of

incorporating allelic series of SNP and VNTR
alleles into functional studies and epidemi-
ological research.
These results are likely just the leading

edge of a far larger set of VNTR-phenotype
associations that future studies will reveal.
In this work with exome-sequencing data, we
were unable to analyze VNTRs that exist in
noncoding sequences, are too short for depth-
of-coverage to accurately measure length var-
iation, or are too mutable to segregate well
with SNP haplotypes. We anticipate that newer
sequencing technologies applied to large, di-
verse cohorts will yield further insights into
the mutational and evolutionary processes
of VNTRs and their contribution to the “miss-
ing heritability” of human phenotypes.
A frustration in the study of human genetics

has been that most reported genetic associa-
tions involve haplotypes of noncoding and
missense SNPs with potential phenotypic

Mukamel et al., Science 373, 1499–1505 (2021) 24 September 2021 6 of 7

A

C

D

E

B

F

Fig. 4. TCHH VNTR length and missense SNP rs11803731 associate
independently with hair phenotypes. (A) Genetic associations with male
pattern baldness at TCHH (N = 189,537 male UKB EUR participants). Colors
indicate partial LD (R > 0.1) with missense SNP rs11803731 (blue), the
TCHH VNTR (red), or both rs11803731 and VNTR length (purple). (B) Mean
baldness score in carriers (lines, left axis) and allele frequencies (histograms,

right axis) of TCHH alleles. TCHH alleles were binned by VNTR length
quintile and missense SNP rs11803731 status. (C and D) Genetic associations
with hair curl at TCHH in N = 3334 TwinsUK participants [conditioned
on rs11803731 in (D)]. (E) Genome-wide associations with hair curl in
TwinsUK. (F) Relationship between TCHH allele length and hair curl
[analogous to (B)].
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contributions that are challenging to disen-
tangle from one another and have first-order
molecular effects that are opaque. VNTRs have
several attributes that help to overcome these
challenges. First, multiallelic VNTRs usually
share only partial LD with nearby diallelic SNP
and indel variants. Second, associations with
protein-coding VNTRs implicate the size and
copy number of specific protein domains, lead-
ing to specific, testable hypotheses about the
effects of protein domains in biological sys-
tems. Third, the directions of coding VNTR
associations have clear meaning, revealing
whether risk is generated by having more or
less of a domain. Finally, VNTRs generate
natural allelic series of functionally distinct
alleles that can be used for dose–response
studies in human tissues and cellular models.
We anticipate that these attributes will
lead to new insights about the mechanisms
by which gene and protein variation affect
human biology.
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Repeats associated with phenotype
The degree to which repeated sequences within a genome affect human phenotypes has been difficult to establish.
Mukamel et al. examined thousands of genomes in the UK Biobank and found that some of the largest effects of
common genetic variants on human phenotypes, including those with clinical relevance, arise from protein-coding
repeat polymorphisms (see the Perspective by Gymrek and Goren). Mapping the effects of the size and copy number
of these repeated protein domains links genetic variation to human phenotypes, including lipoprotein(a) concentration,
height, and male pattern balding. Furthermore, the alleles and frequencies of these repeated sequences differ between
individuals of African and European descent, resulting in differences between the populations with clinical relevance for
traits including lipoprotein(a) levels, a risk factor for coronary artery disease. —LMZ
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