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Chromosomal phase improves 
aneuploidy detection 
in non‑invasive prenatal testing 
at low fetal DNA fractions
Giulio Genovese1,2,3*, Curtis J. Mello1,2,3, Po‑Ru Loh1,4, Robert E. Handsaker1,2,3, 
Seva Kashin1,2,3, Christopher W. Whelan1,2,3, Lucy A. Bayer‑Zwirello5 & 
Steven A. McCarroll1,2,3

Non‑invasive prenatal testing (NIPT) to detect fetal aneuploidy by sequencing the cell‑free DNA 
(cfDNA) in maternal plasma is being broadly adopted. To detect fetal aneuploidies from maternal 
plasma, where fetal DNA is mixed with far‑larger amounts of maternal DNA, NIPT requires a minimum 
fraction of the circulating cfDNA to be of placental origin, a level which is usually attained beginning 
at 10 weeks gestational age. We present an approach that leverages the arrangement of alleles 
along homologous chromosomes—also known as chromosomal phase—to make NIPT analyses more 
conclusive. We validate our approach with in silico simulations, then re‑analyze data from a pregnant 
mother who, due to a fetal DNA fraction of 3.4%, received an inconclusive aneuploidy determination 
through NIPT. We find that the presence of a trisomy 18 fetus can be conclusively inferred from the 
patient’s same molecular data when chromosomal phase is incorporated into the analysis. Key to the 
effectiveness of our approach is the ability of homologous chromosomes to act as natural controls for 
each other and the ability of chromosomal phase to integrate subtle quantitative signals across very 
many sequence variants. These results show that chromosomal phase increases the sensitivity of a 
common laboratory test, an idea that could also advance cfDNA analyses for cancer detection.

Since the discovery of cell-free fetal DNA in maternal plasma in  19971, new technologies based on deep sequenc-
ing of the cell-free DNA (cfDNA) have been replacing earlier prenatal screening methods based on ultrasound 
and serum biochemical  assays2. Non-invasive prenatal testing (NIPT) is now clinically available beginning at 
9–10 weeks gestational  age3–5 (GA) and poses no risk to the fetus, whereas invasive prenatal diagnostic proce-
dures, such as chorionic villus sampling and amniocentesis, come with the risk of miscarriage and are not avail-
able, respectively, before 10 and 15 weeks  GA6. To date, more than 10 million women have received  NIPT7. The 
core analytical challenge in NIPT is that only a small fraction of the DNA in maternal plasma is fetally derived 
(known as the fetal DNA fraction). Thus, analytical methods must detect deviations from a “normal” fetal genome 
in the presence of far-larger quantities of maternal DNA. Two kinds of analytical approaches are routinely used 
to detect fetal aneuploidies from the cfDNA.

Quantitative methods use massively parallel shotgun sequencing (MPSS), then count the numbers of sequence 
fragments arising from a chromosome of interest and compare this with reference chromosome(s). Increased 
(decreased) counts for a specific chromosome can suggest trisomy (monosomy) of that chromosome in the fetal 
 genome8,9. For example, chromosome 21 generates about 1.0% of sequence fragments, a fraction that in principle 
rises only to 1.05% if 10% of the cfDNA arises from a fetal genome with chromosome 21 trisomy, a difference that 
must be distinguished from random chance. A further challenge is that, while statistical sampling noise can be 
addressed by sampling and sequencing larger numbers of sequence fragments, biological and laboratory-process 
driven sources of variation cannot be addressed by simply sequencing more  molecules10. Quantitative methods 
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can detect fetal trisomies at fetal DNA fractions as low as 2%11, but have reduced sensitivity at fetal DNA frac-
tions lower than 4%12,13. As a result, most NIPT analyses based on quantitative methods have a strict 3.5–4.0% 
fetal DNA fraction threshold for returning a  result4,5,14.

Single nucleotide polymorphisms (SNP)-based methods use targeted sequencing to generate very many reads 
from thousands of commonly heterozygous SNPs, then count the number of sequence fragments arising from 
each allele. For each chromosomes these allelic ratios are then assessed for whether they best fit a euploid or an 
aneuploid  scenario15–17. In the cfDNA that is of 10% fetal origin, homologous alleles at maternally heterozygous 
loci, which are present at a 1:1 ratio in purely maternal DNA, could be present at ratios of 11:9, 10:10, or 9:11 
(depending on fetal genotype) if mixed with DNA from a euploid fetus and at ratios of 12:9, 11:10, 10:11, or 
9:12 in the case of a trisomy fetus. SNP-based methods are robust to sources of variation that affect homologous 
chromosomes in an equal manner such as most amplification  biases18. As a result, a commercially available SNP-
based test can return results for fetal DNA fractions as low as 2.8%19, while maintaining high accuracy  rates20–24.

Results of NIPT analyses can be inconclusive, especially in the context of aneuploid pregnancies. Owing 
to low fetal DNA fractions or high assay variance, 3.8% of pregnant women ordering a commercially available 
SNP-based  NIPT25,26 receive an inconclusive result at first blood draw. The dealy until a conclusive aneuploidy 
determination is received can cause anxiety, dissatisfaction and, for aneuploid pregnancies, limit patient  choices27. 
In addition, trisomy 13, 18, and digynic (maternal) triploidy pregnancies are associated with lower fetal DNA 
 fractions25,28–33, possibly as a result of placental abnormalities or smaller placental  sizes34. As a result, among 
pregnant mothers with an aneuploid fetus, the population for whom conclusive results may be most urgent, 10.6% 
receive an inconclusive result, with trisomy 18 pregnancies having the highest rate at 25%3,19.

Here we investigate how chromosomal phase—the arrangement of alleles along homologous chromosomes—
can be used to make conclusive NIPT determinations at low fetal DNA fractions using the SNP-based method. 
While current DNA sequencing technologies can detect an individual’s SNP genotypes, they do not ascertain 
the arrangement of SNP alleles along homologous chromosomes (homologs). Experimental methods to infer 
homologs at chromosomal scale (such as microfluidic separation of individual chromosomes) do  exist35–38, but are 
labor-intensive and expensive and have not been applied in clinical settings. A scalable computational approach to 
chromosomal phasing (“statistical phasing”) draws upon available genotype data from large population cohorts, 
utilizing the fact that at any genomic locus a proband is likely to share, with some individuals in any cohort, 
long DNA segments inherited from (unknown) distant  relatives39–41 which can then be phased by comparing the 
genotypes. Statistical phasing is highly scalable but accurate only at megabase (rather than whole-chromosome) 
scales when using publicly available haplotype reference  panels42. As a result, the two inferred homologs will often 
include “switch errors” at unknown sites which can be thought of as pseudo recombination events between the 
two true homologs. Alternatively, genotypes from direct relatives can provide accurate estimates of the arrange-
ment of alleles along homologous chromosomes, but cannot be as easily retrieved in routine clinical contexts. We 
show how combining previously developed frameworks for inferring fetal genotypes from allelic read  counts43–45 
with an analytical framework expanding on one we developed to detect large mosaic chromosomal alterations 
in blood-derived DNA at low cell fractions (as low as 1%)46–48, we can improve fetal ploidy inference. We inves-
tigate the effectiveness of this approach via in silico simulations, then validate it by analyzing allelic read counts 
generated from the plasma of a pregnant mother carrying a trisomy 18 fetus.

Results
At a technical level, the approach in our NIPT analysis framework is to first infer chromosomal phase for the 
assayed SNPs from a pregnant woman’s genome, then determine the most likely sequence of fetal inheritance 
states for the fetal maternal homologs among those compatible with an aneuploid scenario as well as the most 
likely sequence for a euploid scenario, and then score these two as explained below. To efficiently explore the 
space of all possible sequences, we frame the allelic read counts as the observed states of a Hidden Markov Model 
with the hidden states corresponding to the inheritance states for both fetal maternal and paternal homologs 
and transitions across states corresponding to either switch errors, crossovers, or lack thereof. We then use the 
Viterbi decoding algorithm to find for each of the aneuploid and the euploid scenarios, the most likely sequence 
of fetal inheritance states that explains the observed allelic read counts. To account for switch errors in the 
inferred maternal homologs, and to model crossovers in the maternal meiosis, our model incurs a “penalty cost” 
for switching across inheritance states. We finally compute a single  log10 likelihood ratio (LLR) discrimination 
statistic for the two most likely sequences (Fig. 1) computing likelihoods for the allelic read counts at each SNP 
(Fig. S1). Strongly negative values of the LLR discrimination statistic indicate a euploid fetal genome (for the 
chromosome in question), while strongly positive values indicate aneuploidy. For comparative purposes, we also 
run a simpler less powerful model that does not use chromosomal phase (Methods). We caution that, as the 
SNP-based method relies on sites heterozygous in the mother to detect aneuploidy of maternal origin, in some 
rare cases high levels of homozygosity, possibly due to consanguinity or segmental uniparental disomy, could 
make the data uninformative.

In silico simulation. Since chromosomal phase inferred through statistical phasing is accurate at only 
megabase scales, with switch errors at unknown sites along each chromosome, it was essential to evaluate our 
method under various levels of accuracy for the chromosomal phase, we performed simulations that incorpo-
rate various (known) numbers of switch errors. We simulated allelic read counts over a single chromosome as if 
derived from the cfDNA in the plasma of a pregnant woman with a singleton gestation. To simulate a real case 
scenario presented by a commercially available SNP-based  test19, our simulation included 1500 heterozygous 
loci in the mother’s genome with a sampling of an average of 2000 sequence fragments per locus. At each locus, 
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the expected number of sequence fragments for each allele was estimated from the given fetal DNA fraction and 
the simulated genotypes with overdispersion parameters drawn from empirical data (“Methods”).

Aneuploidies of maternal origin and are more common than paternal  ones49 and require higher fetal DNA 
fractions to detect by SNP-based  methods50 since the contaminating (majority) of the cfDNA comes from the 
maternal genome. We thus focused on this most-challenging problem of inferring fetal maternal homologs. In 
practice, paternal alleles not present in the mother’s genome are readily recognized at loci where the maternal 
genotype is  homozygous43, and from these alleles imputing the remaining paternal alleles works well in genomic 
regions where the paternal homolog harbors a sufficient number of paternal-specific alleles and is unambiguously 
associated with one haplotype from the reference  panel44. To focus on the more challenging and common scenario 
of trisomies of maternal origin we simulated only the fetal inheritance of the maternal homolog and we modeled 
the paternal homolog as contributing equally towards either allele at maternal heterozygous sites (“Methods”).

In the maternal trisomy scenario, the maternal homologous DNA segments can either be the same sequence 
because they arise from the same homolog (which we refer to as single parental homolog [SPH] segments) or 
arise from the mother’s two different homologs (which we refer to as both parental homologs [BPH] segments)51. 
Different autosomes have different rates of SPH and BPH segments when presenting as aneuploid. As an exam-
ple, chromosome 21 trisomies of maternal origin, the most common cause of viable fetal aneuploidies, involve 
BPH segments far more often than SPH  segments52. To simulate a scenario that exemplifies the full complexity 
of the model, we focus on trisomies with two outer BPH segments and one central SPH segment in the trisomy 
scenario (Fig. 2a). The code used for the simulation is publicly available.

Using the 1000 Genomes Project haplotype reference  panel53 or the Haplotype Reference Consortium  panel54, 
statistical phasing on average yields, respectively, one switch error every megabase pair or one switch error every 
2.5 megabase  pairs42. A more accurate approach would be to draw upon data from a mother’s direct relative. As 
an example, chromosomal phasing of maternal genotypes from a previous child’s genotypes, possibly inferred 
through a previous NIPT analysis, would allow the resolution of the maternal genotypes into transmitted and 
untransmitted homologs, with only a few switch errors at the locations of the crossovers for the previous child. To 
address these different plausible scenarios, we ran multiple simulations with variable numbers of switch errors.

We found that chromosomal phase inference provided a dramatic improvement in the ability to distinguish 
a trisomy fetus from a euploid fetus based on the LLR discrimination statistic (Fig. 2b). This improvement was 
observed across a wide range of fetal DNA fractions and switch error rates (Fig. 2c). While we should expect 
additional sources of variation beyond sampling noise to affect the allelic counts in a real-world test, the simu-
lation validates the intuition that detecting fetal aneuploidy from allelic imbalances in maternal plasma can 
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Figure 1.  Schematic representation of the role of chromosomal phase in the computation of the discrimination 
statistic Graphical representation of how chromosomal phase is inferred through relatives on the top and how 
the space of possible fetal inheritance configurations is explored on the bottom to identify, through the Viterbi 
algorithm, the two most likely configurations for both the trisomy and the euploid scenario. A  log10 likelihood 
ratio (LLR) discrimination statistic based on the likelihood of the data and weighed by the number of crossovers 
and phase switch errors needed to explain the fetal genome is then computed. The weight applied to the 
number of crossovers and switch errors is akin to assigning a prior over the space of possible fetal inheritance 
configurations that concentrates the probability towards configurations that can be explained with fewer 
switches starting from parental homologs.
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strongly benefit from knowledge of the chromosomal phase accurate at the scale of megabase pairs, even without 
necessarily having access to genotypes from direct relatives. We have previously observed a similar increase in 
detection power in detecting large mosaic chromosomal alterations (for example, due to clonal hematopoiesis) 
from allelic imbalances at heterozygous  loci46–48.

We next evaluated this idea using clinical NIPT data from a SNP-based targeted sequencing assay.

A case study. We turned to the analysis of a case study involving a nulliparous 35-year-old South Asian 
woman with a singleton gestation. The mother received an abnormal ultrasound finding at 11 weeks GA, prompt-
ing care providers to pursue NIPT through a commercially available SNP-based test. The test returned 10 days 
later as inconclusive. The fetal DNA fraction was estimated as f = 3.4%. However, the test reported an increased 
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Figure 2.  Simulation of  log10 likelihood ratio (LLR) discrimination statistics. (a) Simulated allelic fractions 
from the maternal plasma of a pregnant woman with crossovers and switch errors. The top bars represent 
the simulated maternal homologs inherited by the fetus, with magenta and red representing, respectively, 
mother’s homolog I and mother’s homolog II. Notice that, in the trisomy scenario, switch errors don’t change 
the expected proportion of alleles when occurring in BPH segments. (b) Simulated  log10 likelihood ratio 
(LLR) discrimination statistics from simulations with a fetal DNA fraction specified as f = 3.4%, and an average 
sampling of 2000 sequence fragments at 1500 loci heterozygous for the mother, for both trisomy and euploid 
scenarios. Sensitivity index d’ between the LLR discrimination statistics for the two models is displayed 
together with the AUC estimated as if the two LLR discrimination statistics were normally distributed. As the 
number of switch errors decreases, the ability of the LLR discrimination statistic to distinguish the euploid and 
trisomy scenarios increases. (c) Sensitivity index d’ between LLR discrimination statistics for allelic read counts 
simulated by trisomy scenarios and those simulated by euploid scenarios as a function of fetal DNA fraction 
and the number of switch errors. For reference, a representative chromosomal phase accuracy using different 
chromosomal phasing approaches is reported on the right. Contour lines follow parameters sets with the same 
sensitivity index d’, indicating scenarios with approximately equivalent power to distinguish euploid and trisomy 
scenarios.
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risk (of 5.7%) for digynic triploidy, trisomy 18, or trisomy 13, solely based on the low fetal DNA fraction (given 
maternal age, GA, and a maternal weight of 145 pounds) which is associated with increased risk of adverse 
 outcome25,33. The level of hCG in blood was measured at 32,378. The ultrasound examination at 11 weeks GA 
revealed potential neck thickening possibly due to a small cystic hygroma formation and a crown-rump length 
of 33 mm consistent with a 10 week GA size fetus and therefore compatible with intrauterine growth restriction 
(Fig. 3a).

Sequence data from the SNP-based test were provided by the test provider. These data included 29.8 mil-
lion targeted sequence reads interrogating approximately 3000 common SNPs for each of chromosomes 13, 18, 
21, and X. SNPs sampled by more than 200 sequence fragments were on average sampled 2000 times. We used 
a maximum likelihood-based approach that modeled both the maternal and the paternal inheritance states 
(Methods and Fig. S1). We used knowledge of both maternal and paternal genotypes inferred through high 
coverage MPSS (Methods). We notice that paternal genotypes are often not available in a clinical setting, but 
our framework could be easily extended to modeling the fetal paternal haplotype without using knowledge of 
paternal  genotypes44. Analysis of the allelic fractions without using chromosomal phase identified a male fetus 
with no trisomies of paternal origin over chromosomes 13, 18, 21, and X (Fig. 4). However, due to the low fetal 
DNA fraction, analysis of trisomies of maternal origin (without using chromosomal phase) was inconclusive: the 
LLR discrimination statistics computed from maternal genotypes alone were − 7.67, 1.13, − 5.10 for, respectively, 
chromosomes 13, 18, and 21 (Table 1), similar to what was expected from simulated data (Fig. 2b) and therefore 
insufficient to make a conclusive aneuploidy determination.

We then re-analyzed the same NIPT data combining it with knowledge of chromosomal phase for the parental 
genotypes inferred from the 1000 Genomes Project haplotype reference panel (“Methods”). The analysis yielded 
a highly conclusive determination of trisomy 18, with an LLR discrimination statistic of 14.64 for chromosome 
18 and LLR discrimination statistics of –12.00 and –14.48 for, respectively, chromosomes 13 and 21.

The statistical phasing that enabled this conclusive analysis is expected to be accurate only at megabase 
scales. To evaluate the effect of phase switch errors, we compared to analyses in which we used genotypes from 
direct relatives (Fig. 5a) to infer the actual maternal homologs. We identified 5,355 switch errors across 198,684 
autosomal loci heterozygous for the mother and present in microarray genotype data available for her parents, 
corresponding to an average of one switch error every 0.5 megabase pairs.

Further enhancing chromosomal phase using genotypes from direct relatives to resolve switch errors in the 
inferred maternal and paternal homologs enabled an even more conclusive aneuploidy determination, with the 

Figure 3.  Fetal ultrasound and karyotype. (a) Ultrasound image of a trisomy 18 fetus at 11 weeks GA showing 
potential neck thickening and a crown-rump length of 33 mm. (b) Fetal karyotype. Abnormal 47,XY, + 18 male 
chromosome karyotype with an extra chromosome 18 observed in mitotic cells obtained from examination of 
products of conception.
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same analysis yielding an LLR discrimination statistic of 26.33 for chromosome 18, and LLR discrimination 
statistics of − 36.01 and − 33.77 for, respectively, chromosomes 13 and 21 (Table 1), similar to what was expected 
from simulated data (Fig. 2b). The inheritance states with the highest likelihood for chromosome 18 consisted of 
three segments: two distal BPH segments and one central SPH segment spanning the centromere. This suggests 
a chromosomal non-disjunction in maternal meiosis II with one crossover on each chromosome arm, the most 
common type of maternal chromosome 18 non-disjunction55 (Fig. 5b,c).

Validation with massively parallel shotgun sequencing data. To investigate whether the same ana-
lytical framework could be applied to MPSS data (i.e., without targeting SNPs), we first simulated MPSS data at 
a number of heterozygous loci in the mother’s genome compatible with an empirical scenario with a sampling 
of an average of either 10, 20, or 30 sequence fragments per locus (Fig. S2). These simulations indicated that 
comparable power to the SNP-based targeted approach could be achieved by sampling 10–20 sequence frag-
ments per locus to detect trisomy 13 and 18 and a little more than 30 sequence fragments to detect trisomy 21. 
The same framework indicates that at the simulated sampling averages a non-targeted approach would likely be 
unable to reliably detect the presence of the 22q11.2 microdeletion at low fetal DNA fractions (Fig. S3), similar to 
how commercially available SNP-based NIPT requires a minimum fetal DNA fraction of 6.5% for the detection 
of the 22q11.2 microdeletion of maternal  origin56.

We then generated a sequencing library from the cfDNA obtained from maternal plasma of the same preg-
nant mother at 15 weeks GA, from which we sampled an average of 8.4 sequence fragments per polymorphic 
locus without targeting SNPs (Methods). According to simulations, this level of sampling was likely sufficient 
to validate the results from the SNP-based targeted approach if inferring chromosomal phase using genotypes 
from direct relatives at an f = 3.4% fetal DNA fraction (Fig. S3). However, and not surprisingly, the measured fetal 
DNA fraction in maternal plasma at 15 weeks GA was estimated to be f = 5.9%, higher than the one measured at 
11 weeks GA, reflecting the later GA. Similar to the analysis of the SNP-based targeted sequencing data, the LLR 
discrimination statistics computed from maternal genotype alone were insufficient to make a conclusive ane-
uploidy determination (Table 1). By inferring the parental homologs using the 1000 Genomes Project haplotype 
reference  panel53, the LLR discrimination statistic for chromosome 18 was 26.83, while it was –24.45 and –9.26 
for, respectively, chromosome 13 and chromosome 21, and the highest value across the remaining autosomes 
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was − 2.28. Further improving the chromosomal phase using direct relatives of the parents, the same analysis 
yielded an LLR discrimination statistic of 39.84 for chromosome 18 and –49.46 and –16.52 for, respectively, 
chromosome 13 and chromosome 21, similar to what was expected from simulated data (Fig. S3), while the 
highest value across the remaining autosomes was –9.64 (Table 1). Although either phasing strategy produced 
positive values for chromosome 18 and negative values for all the other autosomes, leading to the same ploidy 
conclusions, it did more confidently so when genotypes were phased using direct relatives in agreement with 
our simulations (Fig. 2c). The inheritance states with the highest likelihood across all chromosomes included 52 
crossovers in the maternal meiosis and 20 crossovers in the paternal meiosis (Fig. S4), in agreement with meas-
ured recombination-rate differences between the  sexes57, although it is likely that crossovers near the telomeres 
were under-ascertained in our analysis. Crossover localizations along chromosomes 13, 18, 21, and X were highly 
consistent between the SNP-based targeted and the SNP-based MPSS analyses.

Confirmation of aneuploidy by histopathology and cytogenetic analysis. Subsequent histo-
pathological examination of products of conception revealed chronic villi with basement membrane calcifi-
cations, consistent with histomorphological findings in trisomic  pregnancies58. Cytogenetic analysis through 
in situ tissue culture for Giemsa-banded chromosome analysis confirmed the presence of an extra chromosome 
18 in 20 mitotic cells in 5 cultures yielding a final non-mosaic 47,XY, + 18 diagnosis for the fetus (Fig. 3b).

Discussion
NIPT is transforming the ascertainment of genetically complicated pregnancies, but its application has been 
limited to pregnancies in which the fetus makes a sufficient contribution to the cfDNA in maternal plasma. Here 
we investigated the possibility that a different way of analyzing the data, drawing upon available population-
level DNA data or genotypes from direct relatives to infer chromosomal phase, could make such analyses more 
conclusive.

We showed through simulations that chromosomal phase inferred through statistical phasing using publicly 
available haplotype reference panels can be used to enhance SNP-based NIPT by lowering the fetal DNA fraction 
limit of detection for aneuploidy. Increasing the accuracy of chromosomal phase to the scale of tens of megabase 
pairs can make such determination even more conclusive. We then presented an empirical case in which a defini-
tive determination of fetal trisomy 18 could be achieved once the allelic resolution of maternal homologs was 
used to reinterpret the SNP-based targeted sequencing data generated from a maternal plasma sample with a 
fetal DNA fraction estimated as f = 3.4%. We further showed that the same framework can be used to enhance 
the interpretation of MPSS data generated from a maternal plasma sample from the same pregnancy with a fetal 
DNA fraction estimated as f = 5.9% with an average of 8.4 sampled sequence fragments per polymorphic locus. 
The data from both tests are available in the public domain through the Personal Genome  Project59.

While the only commercially available SNP-based NIPT that we are aware of at the time of this writing does 
use chromosomal phase to make the aneuploidy  determinations60–65, it is not clear to what extent. Most Fur-
ther debates comparing quantitative methods to SNP-based  methods64–67 will need to account for the value of 
chromosomal phase in decreasing the fetal DNA fraction limit of detection for SNP-based methods. Of course, 
only large-scale clinical trials based on empirical data obtained in real-world clinical contexts can fully evaluate 
the improved resolution of this approach at low fetal DNA fractions, as the strength of SNP-based methods in 
determining fetal aneuploidy lies the resilience by design to sources of variation that affect homologs in an equal 
manner and which might be difficult to model through simulations. We also caution that although SNP-based 
methods do not need to model homologs-neutral amplification biases, they would still benefit from modeling 
biological processes affecting maternal and fetal DNA molecules in different ways across the chromosomes, such 
as DNA molecule  sizes43 and preferred DNA  ends68, whose effects are insufficiently characterized to model in 
our simulations. Similarly, experimental strategies to enrich fetal DNA can also be combined with the method 
we have proposed.

While in the case study presented here we obtained chromosomal phase to the scale of tens of megabase pairs 
through the use of direct relatives, alternative strategies are feasible. For mothers who have already received the 
same NIPT for a previous pregnancy, a provider of SNP-based NIPT could infer maternal homologs at a scale 
limited only by the crossover events in the previous conception, provided that a sufficient fetal DNA fraction was 
achieved in the previous test, similar to how previous conceptions have been used to infer parental homologs 
for the determination of transmission of single-gene recessive mutations in future  pregnancies69. For pregnant 
mothers receiving the test for the first time, a provider could attempt to infer chromosomal phase through detect-
ing shared DNA segments with distant relatives identified among mothers and fetuses whose homologs have 
already been successfully resolved in previous tests. Indeed a current SNP-based NIPT provider now claims to 
leverage information from data generated about the previous 1.6 million sequenced mothers for the purpose 
of better resolving the  homologs24 which shows that chromosomal phasing could be retrieved algorithmically 
with negligible computational costs.

Since recombination is infrequent along human chromosomes, even distantly related individuals tend to share 
DNA segments tens of megabases long and these matches can be used to resolve the chromosomal phase of the 
underlying DNA  segments39–41. As an example, an empirical analysis showed that chromosome 12 homologs 
can be resolved in individuals from the UK Biobank, a cohort of 500,000 volunteers from the United Kingdom, 
with an average of just 1.6 switch errors, equivalent to one switch error every 60 megabase  pairs47. Although the 
UK biobank cohort was analyzed using a DNA microarray assaying approximately 22 k, 19 k, and 10 k markers 
for, respectively, chromosomes 13, 18, and 21, this is not too dissimilar from the targeted approach presented 
here, where approximately 3 k markers were assayed for each of those three chromosomes. A SNP-based NIPT 
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provider without access to its own large pool of previously analyzed samples could harness available genotype 
data from biobank cohorts to infer chromosomal phasing using freely available  software42.

The ability to determine fetal aneuploidy at lower fetal DNA fractions could benefit cases in which an incon-
clusive result would otherwise be returned, possibly at an early stage of the pregnancy when it would cause stress 
and anxiety and limit patient choices while waiting for a redraw to be processed or amniocentesis to become a 
viable  option27. Chromosomal phase could also provide increased power to detect tumors harboring large mosaic 
gains, losses, and copy-neutral loss of heterozygosity of genomic segments from the sequencing of the cfDNA 
from  plasma62 which also contains tumor DNA at low cell fractions. We have shown it possible to infer aneuploidy 
in blood-derived DNA at cell fractions as low as 1%46–48, and similar efforts with the cfDNA from plasma could 
strengthen nascent efforts toward early cancer detection and monitoring of cancer  relapse70.

Our results are a reminder that NIPT for aneuploidy is a test of hypotheses about chromosomes in the fetus 
and that chromosomes are inherited from one generation to the next as blocks that are tens of megabase pairs 
long. Knowledge of the arrangement of alleles along homologous chromosomes can have an important role, 
sometimes in unexpected ways.

Methods
NIPT simulation. To simulate allelic read counts along a chromosome, we first simulate the inheritance 
states sequence T =  (t1, …,  t1500) of maternal inheritance for the fetus. We assume alleles at each heterozygous 
locus are assigned to homolog I and homolog II through a given chromosomal phasing method with s switch 
errors. In the euploid scenario  ti, for i ∈ {1, …, 1500}, can assume only two possible values, indicating whether 
the mother’s homolog I allele  (H1) or the mother’s homolog II allele  (H2) is inherited by the fetus, while in the 
trisomy scenario it can assume three possible values, two SPH states when either the mother’s homolog I allele 
 (H11) or the mother’s homolog II allele  (H22) is inherited twice and one BPH state when both homologs are 
inherited by the fetus  (H12). In simulating the inheritance of maternal homologs by the fetus, we restrict our 
simulation to the case of exactly c = 2 crossovers with two outer BPH segments and one central SPH segment 

Table 1.  Fetal DNA fraction estimates and discrimination statistics across autosomes. SNP-based analyses 
results for the targeted and MPSS data generated from the cfDNA of the plasma obtained from the pregnant 
mother. For each autosome we report (i) the number of covered SNPs for which the parents’ genotypes are 
opposite homozygotes, (ii) the average number of sequence fragments overlapping the SNPs, (iii) the estimated 
fetal fraction from the opposite homozygotes SNPs, (iv) the number of covered SNPs for which the mother 
is heterozygous, and (v) the LRR discrimination statistics for the model without chromosomal phase, with 
chromosomal phase inferred from 1000 Genomes Project haplotype reference panel, and with chromosomal 
phase inferred from direct relatives. Targeted data only covers autosomes 13, 18, 21.

Autosome

SNP-based targeted sequencing (11 weeks GA) Massively parallel shotgun sequencing (15 weeks GA)

# Opposite 
homozygote 
sites

Average # 
of sequence 
fragments

Estimated 
fetal DNA 
fraction

# Maternal 
heterozygous 
sites

LLR discrimination statistic

# Opposite 
homozygote 
sites

Average # 
of sequence 
fragments

Estimated 
fetal DNA 
fraction

# Maternal 
heterozygous 
sites

LLR discrimination statistic

No 
phase

Phase 
with 1000 
Genomes 
Project

Phase 
with 
direct 
relatives

No 
phase

Phase 
with 1000 
Genomes 
Project

Phase 
with 
direct 
relatives

1 – – – – – – – 20,920 8.23 5.84% 115,058 4.15 − 58.28 − 119.15

2 – – – – – – – 20,640 8.63 6.02% 120,127 4.14 − 58.48 − 135.13

3 – – – – – – – 19,614 8.74 5.96% 105,013 1.46 − 51.67 − 114.55

4 – – – – – – – 16,645 9.05 5.88% 108,072 9.96 − 59.59 − 132.10

5 – – – – – – – 17,653 8.75 5.94% 88,874 − 3.10 − 49.56 − 103.84

6 – – – – – – – 18,613 8.70 5.91% 91,153 5.54 − 60.11 − 95.12

7 – – – – – – – 14,425 8.43 6.04% 79,925 7.34 − 41.72 − 70.86

8 – – – – – – – 12,923 8.61 6.20% 79,248 − 5.49 − 56.19 − 106.93

9 – – – – – – – 10,206 8.37 5.92% 61,287 − 0.14 − 33.72 − 65.76

10 – – – – – – – 13,520 8.22 5.97% 72,521 2.60 − 21.68 − 68.18

11 – – – – – – – 11,777 8.36 6.01% 68,641 − 3.65 − 34.85 − 79.84

12 – – – – – – – 12,755 8.41 5.96% 65,875 3.61 − 39.32 − 74.47

13 354 1930 3.46% 1375 − 7.68 − 12.00 − 36.01 10,276 8.92 6.04% 52,609 1.94 − 24.45 − 49.46

14 – – – – – – – 9470 8.45 5.87% 47,726 13.21 − 11.84 − 42.37

15 – – – – – – – 6713 8.12 5.65% 40,571 4.44 − 6.80 − 34.05

16 – – – – – – – 8652 7.27 6.11% 41,622 2.44 − 22.13 − 17.27

17 – – – – – – – 5978 7.02 6.04% 36,397 − 0.79 − 12.57 − 35.71

18 384 1975 3.29% 1,11 1.13 14.94 26.33 6684 8.92 5.64% 41,585 2.60 26.83 39.84

19 – – – – – – – 5491 6.12 6.23% 29,491 − 1.21 − 7.47 − 30.66

20 – – – – – – – 5840 7.51 5.62% 30,894 2.78 − 2.28 − 23.85

21 362 1914 3.36% 1,30 − 5.10 − 14.48 − 33.77 3762 8.33 5.89% 19,878 0.00 − 9.26 − 16.52

22 – – – – – – – 3699 6.50 5.75% 18,235 2.39 − 6.99 − 9.64
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in the trisomy scenario. In the euploid scenario, each crossover and each switch error correspond to changes 
from inheritance state  H1 to  H2 (or  H2 to  H1). In the trisomy scenario, each crossover corresponds to a change 
from inheritance state  H11/H22 to inheritance state  H12 (or  H12 to  H11/H22) and each switch error corresponds 
to a change from inheritance state  H11 to  H22 (or  H22 to  H11) or no change if the current inheritance state is  H12.

For a given inheritance state  ti and fetal DNA fraction f, we estimate πi, for i ∈ {1, …, 1500}, as the fraction 
of homolog I alleles expected in maternal plasma at loci heterozygous in the mother assuming that the fetus 
had inherited a paternal homolog contributing half to homolog I and half to homolog II. Given the maternal 
contribution per allele proportional to 1-f and the fetal contribution per allele proportional to f (Fig. S1), the 
fractions are estimated as:

We then simulate allelic read counts sequences A =  (a1, …,  a1500) and B =  (b1, …,  b1500) such that  ai +  bi is a 
negative-binomial random variable with mean 2,000 and overdispersion α = 0.07, irrespective of the inheritance 
state  ti, and  ai is a beta-binomial random variable with  ai +  bi trials, expected fraction of successful trials πi, and 
intraclass correlation ρ = 0.001, for i ∈ {1, …, 1500} (Fig. 2a).

πi =
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Figure 5.  SNP-based targeted sequencing data with chromosomal phase. (a) Pedigree with parents and 
grandparents of the trisomy 18 fetus. MPSS data of DNA from saliva were available for the parents and 
microarray genotype data of DNA from saliva were available for the grandparents. Data from the SNP-based 
targeted sequencing and MPSS of maternal plasma using the Illumina Nextseq 500 platform were available at, 
respectively, 11 weeks and 15 weeks GA. (b) Schematic representation of the formation of a trisomic zygote 
through missegregation of chromosomes during maternal meiosis II. (c) Graphical representation of sequence 
data at loci heterozygous for the mother from the SNP-based targeted sequencing of maternal plasma at 
11 weeks GA with a fetal DNA fraction estimated as f = 3.4%. Each green point corresponds to the fraction of 
the mother’s maternal allele reads at any of the 13,926 SNP loci that are consistent with heterozygous genotypes 
for the mother and were covered by more than 200 sequence fragments. The two black dotted lines represent the 
expected fractions of the mother’s maternal alleles in the case of a euploid fetus, and the three red dotted lines 
represent the expected fractions in the case of a fetus with trisomy of maternal origin. The blue line is a centered 
rolling mean across 200 consecutive heterozygous SNPs. The top bars represent the inferred inherited homologs 
of the fetus, with magenta, red, cyan, and blue colors representing, respectively, mother’s maternal, mother’s 
paternal, father’s maternal, and father’s paternal homologs. Chromosome 18, with three fetal homologs inferred, 
is highlighted in red. It is important to note that the algorithm to infer the inherited homolog segments takes 
also into account information about the homologs transmitted from the father of the fetus and allelic fractions 
at SNP loci consistent with homozygous genotype for the mother and which are not displayed in this figure and 
that the paternal homologs of the fetus further adds to the sampling noise at loci heterozygous for the mother.
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Say Ω3 is the set of all possible inheritance states sequences X =  (x1, …,  x1500) in the trisomy scenario, and Ω2 
is the set of all possible inheritance states sequences X =  (x1, …,  x1500) for the euploid scenario, including inherit-
ance states sequences comprising of any number of crossovers and switch errors. For each simulation of allelic 
read counts A and B, we compute the  log10 likelihood ratio (LLR) discrimination statistic:

with the likelihood L computed as follows:

where P(k | n, π, ρ) is the beta-binomial likelihood for k successful trials out of n trials with an expected fraction 
of successful trials π and intraclass correlation ρ and the transition likelihood L(xi-1,  xi, c, s) is defined as follows:

Notice that the transition likelihood is affected by the assumed number c of crossovers and the number s of 
switch errors. Transition likelihoods L(H1,  H2, c, s) and L(H11,  H22, c, s) can be thought of as “penalty costs” to 
allow to integrate the signal across consecutive polymorphic loci while still accounting for switch errors. This 
computational expedient allows leveraging chromosomal phase even when imperfect as is the case when inferred 
using statistical phasing through large genotyped  cohorts40,41, similar to what has been done in previous  work71,72. 
To identify the inheritance states sequences that best fit the data, we use the Viterbi decoding algorithm. This 
allows to perform a quick and efficient search across the large space of inheritance states sequences with a com-
plexity linear in the number of transitions, but it does not allow to subset the search among inheritance states 
sequences with a predefined number of switch errors or crossovers nor does it allow for modeling of biological 
phenomena such as crossover interference.

Say Ψ3(c = 2,s) ⊆ Ω3 and Ψ2(c = 2,s) ⊆ Ω2 are the sets of all possible inheritance states for, respectively, a trisomy 
and a euploid fetus with exactly c = 2 crossovers and s switch errors. For each pair (f, s) we simulate multiple 
allelic read counts sequences A, B (Fig. 2b) and the corresponding LLR discrimination statistics and, from these, 
we estimate means μ3 and μ2 and variances σ3

2 and σ2
2:

We use these estimates to compute the sensitivity index d’(f, s) between the two LLR discrimination statistics:

to measure how well a classifier based on the LLR discrimination statistic would be expected to distinguish the 
trisomy scenario from the euploid scenario. Notice that the sensitivity index d’ for normal distributions entirely 
determines the receiver operating characteristic curve and can be related to the area under the curve (AUC) via

where Φ is the cumulative distribution function of the normal distribution.
To estimate what pairs of fetal DNA fraction and number of switch errors (f, s) provide comparable power 

to distinguishing the two scenarios, we estimate the sensitivity index d’(f, s) for fetal DNA fraction f in maternal 
plasma varying from 1.0% to 7.0% and for the number of switch errors s in the maternal homologs varying from 
0 to 100 (Fig. 2c). The code used is publicly available.

SNP‑based targeted sequencing of DNA from maternal plasma. Two blood samples were drawn 
from the pregnant mother in two 10 ml Streck tubes at 11 weeks GA and the cfDNA was isolated from maternal 
plasma samples, amplified, and analyzed using the Natera Panorama v3  test13. The protocol includes a set of 
pooled primers targeting 13,926 distinct genetic loci, including 1351 SNPs on the 22q11.2 region to detect fetal 
22q11.2  microdeletion56 and 277 Y-chromosome  loci73 to infer sex and sex chromosome aneuploidies. Target 
SNPs have at least a 10% population minor allele frequency to ensure that a sufficient fraction would be heterozy-
gous in any given  patient62. Sequence data revealed that approximately three-quarters of targeted SNPs are pre-
sent in  HapMap74 and, cross-referencing with data from the 1000 Genomes  Project53, the vast majority of SNPs 
have a mean worldwide minor-allele frequency greater than 35% with approximately 45% expected to be het-
erozygous in any given individual, similar to other strategies used to select SNPs that maximize  heterozygosity75. 
Following amplification, libraries were run on the Illumina NextSeq 500 platform (Illumina, Inc., San Diego, 
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CA)56 with 50 base pairs single-end sequence reads over three separate sequencing runs, likely because samples 
with ≤ 7% fetal DNA fraction are re-sequenced at a higher  depth19. Read throughput for the three runs was 6.2, 
7.1, and 16.5 million reads, for a total of 29.8 million reads.

Massively parallel shotgun sequencing of DNA from saliva. High coverage MPSS data for the par-
ents of the trisomy 18 fetus were available through Dante  Labs76. Data were generated on the BGISEQ-500 
platform, in paired ends 100 bp reads. Read throughput for the pregnant mother was 67.7, 76.0, 80.9, 58.7, 57.6, 
49.3, 125.4, and 71.6 million read pairs, for a total of 587 million read pairs. Read throughput for the father of the 
fetus was 81.3, 89.3, 63.4, 64.8, 45.9, 83.7, 65.6, and 71.2 million read pairs, for a total of 565 million read pairs.

Massively parallel shotgun sequencing of DNA from maternal plasma. Two blood samples were 
drawn in two 10 ml Streck tubes at 15 weeks GA. Plasma was separated from fresh whole blood according to the 
Streck cfDNA BCT tube protocol:

• Centrifuge whole blood at 300×g for 20 min at room temperature
• Remove the upper plasma layer carefully and transfer to a new conical tube
• Centrifuge the plasma at 5000×g for 10 min
• Remove plasma from any pelleted debris, and proceed to the isolation of the cfDNA.

We then followed the instructions provided in the QIAamp Circulating Nucleic Acid Kit (Qiagen Cat# 55114) 
to isolate the cfDNA according to the amount of plasma that has been collected. Multiple tubes of blood from a 
single patient can be processed on one single Qiagen kit column in order to concentrate the DNA while main-
taining a low elution volume (important for library construction). We quantified the cfDNA prior to library 
construction on an Agilent TapeStation system using a high sensitivity D5000 ScreenTape.

Sequencing libraries were generated from the extracted cfDNA using the ThruPLEX Plasma-seq kit (Takara 
bio) following the instructions in the kit.

Note on library clean up: we have found that after library generation there is often a large quantity of high 
molecular weight library fragments that were produced from undesired DNA (library sizes 800–1200 bp). The 
library molecules generated from the desired cfDNA, which are around 300 bp in size (DNA insert + adapters), 
were enriched for by adding a “double cleanup” cleaning step using AMPure beads (Beckman Coulter), after first 
performing the 1:1 bead to sample post-amplification cleanup as described in the ThruPLEX protocol.

The double cleanup involved first adding 0.6X AMPure beads to the sample, incubating for 5 min, placing 
the sample on a magnetic rack, and collecting the supernatant. A volume of AMPure beads was again added to 
the supernatant to get to a 1:1 sample to bead ratio, incubating for 5 min, placing on a magnetic rack, and this 
time discarding the supernatant. The magnetic beads were washed twice with 80% ethanol and the library frag-
ments were eluted from the beads and analyzed on the Agilent TapeStation d5000 screen tape for sequencing.

Libraries were run on the Illumina NextSeq 500 platform with a high output, 300 cycle kit, with 159 base 
pairs paired-end sequence reads, to maximize the odds of overlapping an informative polymorphic locus. Read 
throughput from the four lanes was 63.9, 65.4, 62.4, and 63.5 million read pairs, for a total of 255 million read 
pairs.

Microarray‑based genotyping of DNA from saliva. Microarray genotype data for three of the grand-
parents of the fetus were available through  23andMe77,  AncestryDNA78, and  FamilyTreeDNA79. We downloaded 
the genotype calls aligned against the GRCh37 human genome reference from the company’s respective websites 
and we converted the genotype calls to VCF using BCFtools  convert80. We then lifted over genotypes coordinates 
to the GRCh38 human genome reference using the liftOver  tool81, making sure to reverse complement alleles for 
SNPs whose coordinates flipped strands. Markers that failed to lift over were discarded.

Sequence alignment and processing. Sequence reads were aligned against the GRCh38 human genome 
reference using bwa  mem82. Aligned sequence reads were further processed with the MarkDuplicate Picard 
 tool83 and base pair qualities were recalibrated using version 4.1.3.0 of the GATK Base Quality Score Recali-
bration walker according to GATK best  practices84. Genotypes for DNA from saliva were called using version 
4.1.3.0 of the GATK HaplotypeCaller  walker85. Allelic depths for sequence fragments, rather than for sequence 
reads, were measured using version 4.0.12.0 of the GATK Mutect2  walker86, as at the time of the writing of this 
manuscript both the GATK HaplotypeCaller walker and newer versions of the GATK Mutect2 walker are unable 
to correctly annotate the allelic depth from overlapping sequence read pairs which occur frequently in MPSS 
data from maternal plasma due to the short size of cfDNA  molecules43.

Chromosomal phasing. Parental genotypes were pre-processed with  BCFtools80 and phased using  Eagle41, 
using the 1000 Genomes Project haplotype reference  panel53 lifted over to the GRCh38 human genome refer-
ence. Chromosomal phase for the parents of the fetus was further improved using microarray genotype data 
from the grandparents of the fetus using the BCFtools trio-phase plugin part of the MoChA  software87. Briefly, 
the trio-phase plugin determines the chromosomal phase at heterozygous sites for which at least one of the 
parental genotypes is determined as homozygous and then propagates this information at nearby heterozygous 
sites previously phased with Eagle for which the parental genotypes are either heterozygous or missing.
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Estimation of fetal DNA fraction. We estimated fetal DNA fraction from allelic ratios over heterozygous 
loci homozygous for opposite alleles in the  parents43, that is, maternal homozygous loci for which the genotype 
of the fetus could be deterministically predicted as heterozygous. Given an autosome i and given  pi the number 
of sequenced reads with fetal-specific alleles and  qi the number of sequenced reads with alleles shared by the 
fetus and the mother across all such loci from autosome i, the fetal DNA fraction for that autosome i is estimated 
as:

These values were observed to be highly consistent across autosomes (Table 1) as previously  reported43. To 
avoid potential biases due to aneuploid chromosomes, for each maternal plasma sample we estimated the fetal 
DNA fraction f as the median, rather than the mean, of the fetal DNA fractions  fi across the autosomes.

Estimation of overdispersion. Although an initial commercial offer of the SNP-based method claimed to 
model allelic read counts as binomial random  variables15, failure to properly model the overdispersion can cause 
artificially inflated LLR discrimination statistics as SPH segments from trisomy scenarios can erroneously fit the 
additional variance. Later iterations of the method introduce the use of beta-binomials to address this  issue63, 
although this requires an additional parameter to be fit from the data. Measuring overdispersion is important 
when a large number of sequence fragments are sampled from each polymorphic locus with fragments that 
might originate from the same DNA molecule due to PCR amplification.

As the sequence data were generated from maternal plasma that included DNA from a male fetus, we used 
allelic read counts over chromosome X from the SNP-based test for which we do not expect additional variation 
due to inherited paternal homologs. We fit the intraclass correlation parameter ρ to maximize the product of 
beta-binomial likelihoods for the allelic read counts of the mother’s maternal alleles over SNP loci heterozygous 
for the mother along chromosome X restricting to loci covered by more than 200 sequence fragments, with allelic 
fractions for both alleles within 0.4 and 0.6 to exclude potential outliers due to small copy number variants, and 
further excluding regions Xp22.31, Xp22.32, and Xp22.33, as these regions have a different maternal inheritance 
state than the rest of chromosome X (Fig. 5c). The value ρ = 0.000936 was the value that best fit the allelic read 
counts from the SNP-based test and we rounded this value to ρ = 0.001, an estimate in agreement with independ-
ent modeling performed by a different  group66. We caution that outlier loci can inflate the ρ parameter when 
fit as described, as the tails of a more overdispersed beta-binomial distribution can have much higher relative 
likelihoods than the tail of a less overdispersed beta-binomial distribution. We further fit the overdispersion 
parameter α to maximize the product of negative-binomial likelihoods for the total allelic read counts. The value 
α = 0.0697 was the best fit, and we rounded this value to α = 0.07 in our simulations. Notice that this value was 
not used in the computation of the LLR discrimination statistics, as the total allelic read counts are not used in 
the likelihood computations for the LLR.

Maximum likelihood computations for empirical data. To model the expected allelic fractions from 
empirical data we first estimate, given both the maternal and the paternal inheritance states and both the mater-
nal and paternal genotypes at a locus, what the expected fetal genotype at the locus is. Polymorphic loci likeli-
hoods for each chromosome were computed as beta-binomial likelihoods P(k | n, π, ρ) with k the number of A 
alleles, n the total number of A and B alleles, π the expected fraction of A alleles in maternal plasma as a function 
of the estimated fetal DNA fraction f, maternal genotype, and fetal genotype, and ρ = 0.001 the intraclass correla-
tion. For the model not using chromosomal phase, likelihoods P(k | n, π, ρ) and P(n-k | n, π, ρ) are averaged to 
obtain a combined likelihood that does not depend on chromosomal phase. To speed up likelihood computa-
tions across very many polymorphic loci, precomputed tables can be generated (Fig. S1).

Notice that in this model we assume the availability of both maternal and paternal homologs resolved with 
chromosomal phase, but a similar model could be designed where the paternal homologs inherited by the fetus 
are instead modeled through imputation using an external haplotype reference panel subsequent to inferring 
the fetal genotypes at loci where the mother is  homozygous44.

We excluded from the likelihood computations indels, variants that failed variant quality score  recalibration84, 
variants missing from the 1000 Genome Project haplotype reference  panel53, and, due to bugs in the assembly 
graph determination in both the GATK HaplotypeCaller  walker85 and the GATK Mutect2  walker86 at the time 
of the writing of this manuscript, variants that in the parents were less than 20 base pairs from each other. To 
avoid over-counting evidence at consecutive variants that might be covered by the same sequence fragments, 
we filtered variants to make sure a distance of at least 100 base pairs was always present between consecutive 
variants. For each chromosome,  log10 likelihood ratio discrimination statistics were computed similar to what 
done for simulated allelic read counts. The code used is publicly available as a BCFtools plugin.

Data availability
The data is freely available through the Personal Genome Project: https:// my. pgp- hms. org/ profi le/ hu058 D3E 
sequence data from the pregnant mother https:// my. pgp- hms. org/ profi le/ huC1F 919 sequence data from the 
father of the fetus.

Code availability
https:// github. com/ frees eek/ blueb erry code to reproduce all analyses.

fi =
2pi

pi + qi

https://my.pgp-hms.org/profile/hu058D3E
https://my.pgp-hms.org/profile/huC1F919
https://github.com/freeseek/blueberry
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