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SUMMARY
Human genome variation contributes to diversity in neurodevelopmental outcomes and vulnerabilities;
recognizing the underlying molecular and cellular mechanisms will require scalable approaches. Here, we
describe a ‘‘cell village’’ experimental platform we used to analyze genetic, molecular, and phenotypic het-
erogeneity across neural progenitor cells from 44 human donors cultured in a shared in vitro environment
using algorithms (Dropulation and Census-seq) to assign cells and phenotypes to individual donors. Through
rapid induction of human stem cell-derived neural progenitor cells, measurements of natural genetic varia-
tion, and CRISPR-Cas9 genetic perturbations, we identified a common variant that regulates antiviral IFITM3
expression and explains most inter-individual variation in susceptibility to the Zika virus. We also detected
expression QTLs corresponding to GWAS loci for brain traits and discovered novel disease-relevant regula-
tors of progenitor proliferation and differentiation such asCACHD1. This approach provides scalable ways to
elucidate the effects of genes and genetic variation on cellular phenotypes.
INTRODUCTION

Humans harbor immense diversity in biological traits and dis-

ease risk, affecting almost all organs and physiological func-

tions. Reservoirs of natural variation allow populations to

adapt to existential crises and selective pressures, such as

viral outbreaks. In the brain, variation in neurodevelopmental

processes—such as the proliferation and differentiation of

neural progenitor cells (NPCs)—creates variation in propen-

sities for learning, socializing, and responding to environ-

mental stressors; disruption of these processes can lead to

autism spectrum disorder (ASD), cancer, and congenital Zika

syndrome.1,2 How genetic variation acts through molecular,

cell, and developmental biology to shape trait variation and

disease risk remains largely unknown.
Cell Stem Cell 30, 1–2
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Genetic variants can influence neural phenotypes through the

regulation of gene expression, which has unknown effects on

signaling pathways, cell migration, and cell-cell interactions.

Abundant human genetic variation has been cataloged by the

International HapMap3 and 1000 Genomes projects.4 Efforts

such as the Genotype-Tissue Expression (GTEx5) Consortium

have identified thousands of expression quantitative trait loci

(eQTLs)—associations of single nucleotide polymorphisms

(SNPs) to RNA expression of nearby genes—in every adult organ

analyzed. In vitro human pluripotent stem cell (hPSC) models

have also proven useful for eQTL detection through approaches

that maintain cells from many human donors in separate culture

environments followed by preparation of individual bulk RNA

sequencing (RNA-seq) libraries.6,7 Thismethod results in consid-

erable technical variation that can mask biologically relevant
1, March 2, 2023 ª 2023 The Authors. Published by Elsevier Inc. 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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effects and requires substantial resources, hands-on activities,

and costs.

Though thousands of eQTLs have been found in numerous

brain regions and cell types, we know little about how these ef-

fects percolate through cell biology to influence phenotypes.

Biological pathways are robust to many kinds of perturbation

and may buffer the effects of many genetic variants, even those

that affect a gene’s expression. Thus, it is essential to under-

stand the relationships among genetic variants, gene expres-

sion, and the physiological phenotypes of cells. This has been

difficult for neurodevelopmental phenotypes, in substantial part

because NPCs are no longer present when individuals’ traits

are ascertained or when postnatal tissue is sampled for

analysis.8,9

NPC production can be accomplished by suspending hPSCs

as embryoid bodies prior to transfer to an adherent surface and

manual or enzymatic selection of neural rosettes10–12 or through

application of small molecule inhibitors of SMAD.13 These tech-

niques produce neural cells by mimicking embryonic events and

are attractive because of their presumed developmental fidelity.

However, they require 11–50 days of induction to produce stable

NPC cultures14 and are variably effective across donor cell lines,

in which rounds of differentiation can fail outright or produce het-

erogeneous cell types.15,16 Recently, the forced expression of

the transcription factor Neurogenin-2 (NGN2) has been shown

to robustly generate homogeneous cultures of mature post-

mitotic cortical neurons.17,18 Fast and reliable NPC induction

techniques are still needed for scaledmodeling of the developing

brain.

Here, we describe advances in two technologies that can

help dissect interactions among alleles, molecules, and cellular

phenotypes in human NPCs. The first is genetic multiplexing,

in which thousands of cells from scores of donors are pooled

in a shared in vitro environment—a ‘‘cell village’’—and then

analyzed simultaneously by single-cell RNA-seq; transcribed

SNPs are used to assign individual cells to individual donors.

The second is an NGN2-based scheme that requires only

48 h for NPC induction and is effective in over 100 hPSC lines.

We coordinated these approaches with ‘‘Census-seq,’’ a rapid,

inexpensive method for relating cellular phenotypes to natural

genetic variation by sequencing the genomic DNA from cell

villages.19 We also incorporated functional CRISPR-Cas9

screens to explore thousands of artificial genetic perturbations

simultaneously.20,21

Using this experimental platform, we detected NPC eQTLs in

neurodevelopmental disorder (NDD) genes and brain trait

genome-wide association study (GWAS) loci. We also uncov-

ered a SNP that explains more than 50% of inter-individual

variation in NPC susceptibility to the Zika virus (ZIKV).

Genome-wide CRISPR-Cas9 screens aided in the discovery

of this functional QTL and revealed new regulators of NPC

growth and viability that were significantly enriched for NDD

genes. This includes CACHD1, which enhanced proliferation

and disrupted differentiation in 2D and 3D neural models

upon ablation. Our findings establish an integrated experi-

mental format that uses natural and synthetic perturbations to

identify genes and genetic variants that change a cell’s pheno-

type in a meaningful way.
2 Cell Stem Cell 30, 1–21, March 2, 2023
RESULTS

Assignment of cells to individual donors using
transcribed SNPs
To ascertain how natural genetic variation shapes cellular phe-

notypes, we sought to eliminate technical sources of variation

by culturing cells from many donors in a shared environment

and analyzing them together. This requires re-identifying the

donor of each cell during single-cell analysis. The combination

of hundreds of transcribed SNPs can identify the donor of an

individual cell.22 We further developed such analysis: (1) to

address challenges inherent to scRNA-seq experiments, such

as ambient RNA; (2) to utilize unique molecular identifiers

(UMIs) rather than reads as the informative analytical unit; and

(3) to enable scalability up to hundreds of potential donors. We

implemented a maximum likelihood approach that calculates

for each donor (utilizing pre-existing whole-genome sequencing

or SNP data) the likelihood that the observed single-cell level

combination of transcribed alleles arose from that donor’s

genome sequence. We incorporated uncertainty to address

sequencing error or ambient RNA. We provide the resulting soft-

ware ‘‘Dropulation’’ (Droplet-based sequencing of populations)

in an open-source format (https://github.com/broadinstitute/

Drop-seq).

To evaluate the accuracy with which cells were assigned to

donors by Dropulation, we first analyzed scRNA-seq data from

five human embryonic stem cell (hESC) lines pooled in silico

(Figures S1A and S1B). The analysis conclusively identified a

donor for 97.6% of cells, doing so with 99.8% accuracy and

distinguishing among closely related (genetic sibling) donors

(Figures S1C and S1D). On average, individual cells contained

hundreds to thousands of transcripts with sequences that varied

among the donors (Figure S1E); 20%–50% of all UMIs contained

such sites (Figure S1F). Only 2.4%of cells—generally low-quality

single-cell profiles, in which few UMIs had been ascertained—

were determined to be ‘‘unassigned’’ due to low assignment

confidence (Figure S1D). The frequency of donor mis-assign-

ment by Dropulation was low (0.2%), suggesting that the assign-

ment confidence was well-calibrated.

Allelic information provides powerful ways to detect cell-cell

doublets,22 an important challenge in scRNA-seq analyses. Dro-

pulation detects doublets by asking whether an in silico mixture

of two donors’ genotype data (Figure S1G) generates a single

cell’s data with a higher likelihood than any one donor’s geno-

type data does (Figure S1H). In in silico evaluations, doublet

detection by Dropulation had a true positive rate of 98.3% and

a false positive rate of 1.5% when donor data were mixed in a

1:1 ratio. Misclassification of singlets as doublets was rare (Fig-

ure S1I); singlets tended to be misassigned when they had fewer

than 100 informative UMIs (Figure S1J). Larger numbers of UMIs

were needed to recognize unequal donor mixtures, as might

arise from doublets of two cells of distinct sizes. Still, detecting

donor mixtures of 4:1 required only about 240 informative

UMIs (Figure S1K). These data indicate that doublets are suc-

cessfully recognized when they involve cells from two donors

and the depth of UMI ascertainment is adequate.

We tested these algorithms for their ability to identify the 36

donors present (among 142 candidates) in a cell village; analysts

https://github.com/broadinstitute/Drop-seq
https://github.com/broadinstitute/Drop-seq
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Figure 1. scRNA-seq characterization of human iPSC village

(A) Schematic of cell village workflow.

(B) Composition of hiPSC village by donor sex and reprogrammed tissue source.

(legend continued on next page)
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were blind to the number, identity, and proportion of donor lines

included in the village. Analysis successfully identified all (36/36)

donors with cells present in the village without incorrectly assign-

ing any cells to the 106 other candidates (Figure S1L).

To further test Dropulation in real-world experimental contexts,

we constructed a 104-donor cell village that included whole-

genome sequenced human induced pluripotent stem cells

(iPSCs) derived from male and female skin and blood cells

(Figures 1A and 1B). We profiled 86,185 cells from this village

by scRNA-seq 5 days after pooling. We sampled an average of

104,160 UMIs per cell, which was well powered to assign cells

to donors (Figure S1M). We thenmeasured the relative proportion

of each donor in the village using both Dropulation and Census-

seq, a low-coverage-WGS-based computational tool we devel-

oped to infer the donor composition of cell mixtures from bulk

DNA.19 We detected high concordance between these single-

cell RNA and bulk-DNA methods, validating both (Figure S1N).

Analysis of biological variation in ‘‘Dropulations’’
The ability to measure mRNA expression in a shared culture envi-

ronment made it possible to quantify effects that have long been

of great concern in hiPSC research, including effects of cell

source and donor sex. The iPSCs from104donors exhibited high-

ly similar RNA expression patterns (Figure 1C). The primary

source of variation in donor transcriptional profiles was their prog-

ress through the cell cycle (Figure 1D). Heterogeneity in cell state

or identity also impacted gene expression, though as expected,

the majority of cells expressed pluripotency markers NANOG

and OCT4 at high levels (Figure 1E). A subset of cells expressed

NPC markers indicative of spontaneous neural differentiation,

whereas others displayed the lower UMI counts and higher per-

centages of nascent transcriptswith intronic reads that are typical

of nuclei rather than intact cells (Figures 1F, S1O, and S1P).

There are fundamental methodological questions regarding

the comparability of iPSCs created from different tissues.

We identified differentially expressed genes (DEGs) across all

donors and found only four DEGs (all noncoding RNAs;

FDR < 5%) that distinguished the 57 skin-derived lines from

the 47 blood-derived lines (Figures 1G and 1H; Document S1;

Data S1). This finding suggests that there is modest retention

of epigenetic memory inherited from the parental cell source of

origin in the iPSC lines, but that few protein-coding genes are

strongly affected by this memory.

Many human phenotypes exhibit sex differences. RNA

expression levels of many genes differ on average between

males and females in various tissues,23 but the extent to which

cell-autonomous biology contributes to such differences is un-

known. RNA expression profiles of individual cells initially ap-

peared to be strongly distinguished by donor sex (Figure 1I).

This difference disappeared, however, when we limited analysis
(C–E) Factors influencing variation in gene expression. tSNE projection of scRNA-

expression profiles. (E) Expression of pluripotency markers OCT4 and NANOG in

(F) Cell groups represent proliferative stem cells, differentiated cells, and nuclei.

(G and H) Minimal effect of cell source (fibroblast vs. PBMC) is seen in (G) tSNE p

donor cell source.

(I–L) Effect of donor sex on RNA expression. tSNE projections of scRNA-seq data f

comparisons of all iPSC donors, grouped by donor sex and cell source. Three dif

purple (2.0-fold) dotted lines. (L) Volcano plot of DEG analysis grouped by donor
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to autosomal genes (Figure 1J): it arose almost entirely from

Y-linked genes and the X-linked genes that escape X chromo-

some inactivation and did not appear to involve broader effects

on cells’ biology. When we compared pairs of donors within and

between sex to generate pairwise distributions of DEGs, we

found similar numbers of autosomal DEGs in same-sex compar-

isons (XX vs. XX; XY vs. XY) as we did in across-group (XX vs. XY)

comparisons (Figure 1K), indicating that on average iPSCs from

XX and XY individuals were roughly as different from each other

as same-sex individual pairs regardless of cell source. Consis-

tent with earlier observations from tissue-level analysis,23 sex

effects were small (median log2FC upregulated genes = 0.15,

downregulated genes = �0.10; Figure 1L).

Collectively, these results suggest that differences in gene

expression generated by donor sex and source cell type are

small compared with the effects of inter-individual variation,

and that sex differences in expression of sex-chromosome

genes do not lead to broader effects on cells’ biology in this

context. The ability to remove culture-to-culture sources of vari-

ation and quantify sources of molecular variation in a cell village

allowed these relationships to emerge clearly and enabled

similar experiments in other cell types.

Brief NGN2-mediated neuralization of hPSCs produces
human dorsal telencephalic NPCs
Constructing villages of NPCs requires quick, dependable in-

duction. Overexpression of NGN2 efficiently neuralizes hPSCs,

but it was suggested that these post-mitotic neurons bypass

the progenitor stage.24 To determine if NGN2 induction creates

progenitor-like cells, we re-analyzed published RNA-seq data

from cells harvested during NGN2-directed differentiation to

post-mitotic neurons.17 The expression of forebrain NPC genes

increased, whereas pluripotency genes decreased over the first

few days (Figure S2A). Most cells were positive for the prolifera-

tive marker MKI67 during the first 2 days of induction, but not at

day 3 (Figure S2B; Table S1), and 2 days of NGN2 overexpres-

sion yielded substantially more progeny over a week of subse-

quent expansion than did cells subjected to 4 days of overex-

pression (Figure S2C). Thus, NGN2 overexpression beyond

48 h promotes cell cycle exit.

Wedesigned an approach to create andmaintain self-renewing

human NPCs. SW7388-1 iPSCs were transduced with two sepa-

rate lentiviruses encoding TetO::Ngn2:T2A:PURO and Ubq::rtTA

to enable doxycycline (DOX)-inducible expression of mouse

NGN2 and the linked puromycin resistance gene (Figure 2A).

We initiated NGN2 induction by adding DOX and small molecule

inhibitors of the SMAD (LDN-193189 and SB431542) and WNT

(XAV939) signaling pathways, which dorsalizes early neural

cells.25–27 After 24 h, puromycin was added to eliminate non-

transduced cells. At 48 h, these cells (hereby referred to as
seq data color-coded by (C) donor and (D) cell cycle stage as inferred from RNA

counts per million (CPM).

rojection of scRNA-seq data and (H) volcano plot of DEG analysis grouped by

rom (I) all genes and (J) autosomal genes only. (K) Numbers of DEGs in pairwise

ferent fold-change thresholds denoted by green (1.2-fold), blue (1.5-fold), and

sex.
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Figure 2. Rapid induction of stem cell-derived human NPCs

(A) SNaP induction protocol.

(B) Bright field images of SW7388-1 iPSCs (left) and SNaPs at 48 h post-induction (right).

(legend continued on next page)
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stem cell-derived NGN2-accelerated progenitors or ‘‘SNaPs’’)

showed a bipolar morphology characteristic of NPCs (Figure 2B)

and expressed forebrain NPC protein markers PAX6, NESTIN,

and FOXG1—which were absent in hPSCs (Figure S2D)—and

neural stem cell proteins SOX1 and SOX2 (Figures 2C and 2D).

In line with exit from pluripotency, OCT4 levels declined precipi-

tously (Figure S2E). SNaP induction efficiency was independent

of seeding density (Figure S2F), which is an improvement over

SMAD inhibition methods that require specific, high hPSC con-

fluencies for successful conversion.13

To maintain SNaPs in a proliferative, self-renewing state, we

passaged into growth-factor-containing media. We observed

self-organized neural rosette structures and still-higher percent-

ages of NPCmarker positivity (Figures 2E–2G). SNaPs displayed

a mean doubling time of 41.02 h (Figure S2G) similar to that of

other proliferative NPC models.11

The hPSC-to-NPC transition is accompanied by changes in

molecular landscapes. We used qPCR, bulk RNA-seq, and

ChIP-seq to evaluate SNaP transcriptional signatures. SNaPs

displayed a marked increase in PAX6, FOXG1, and SOX1 levels

relative to hPSCs at 48 h post-induction, whereas OCT4

declined; this pattern was similar to NPCs generated using es-

tablished protocols (Figures S2H–S2J). Bulk RNA-seq revealed

upregulation of NPC markers OTX1 and EMX2 and downregula-

tion of pluripotency genes LEFTY1 and NANOG (Figure S2K;

Document S1; Data S2). SNaPs also displayed high expression

of genes expressed in dorsal progenitors and low levels of genes

expressed in posterior and ventral brain regions (Figures 2H–2J).

SnaPs, therefore, resemble dorsal telencephalic NPCs.

We performed ChIP-seq analysis to identify the DNA targets of

overexpressed mouse NGN2 protein during SNaP differentiation

to gain insight into the regulatory mechanisms guiding neural

conversion. Interaction peaks were detected 24–48 h post-in-

duction in or near proneural genes that are targets of mammalian

NGN2, including NEUROD1/4 and ELAVL4,28,29 as well as NPC

marker genes, such as NESTIN and PAX6 (Figure S2L; Docu-

ment S1; Data S3). We observed peaks in 8,950 genes, including

in the promoter and/or UTR regions of 1,300 genes. These

data—along with our qPCR and immunostaining results that

showed high expression of NPC markers at 48 h post-induc-

tion—suggest that SNaP identity is driven by the direct activation

of NPC gene loci and the remodeling of the chromatin landscape

to favor neural differentiation.

SNaPs self-renew and differentiate into neurons
and glia
During fetal development, NPCs differentiate into the cortical

excitatory neurons and astrocytes that populate the brain.30–32

To assess developmental potency, we cultured SNaPs under
(C) Quantification of protein marker expression from immunocytochemistry at 48

(D) Immunostaining of forebrain NPC protein markers at 48 h post-induction.

(E–G) SNaPs self-organize into (E) rosette-like structures 2 days after the first pa

(H and I) Bulk RNA-seq of H9 SNaPs. Normalized DESeq2 counts of (H) anterior

(J–M) SNaP multipotency assays. Bright field images of (J) SNaP-derived post-

astrocyte media (AM). (L) Quantification of (M). (M) Immunostaining of neuronal (H

FBS media after 2–3 weeks in culture or after 20–60 days in AM.

(N–Q) SNaPs can self-renew. (N) Representative image of a cluster of PAX6+/NE

Representative image of well containing both SNaP-derived neurons and glia at 14

both. Scale bar, 25 mm (B, F) or 50 mm (D, E, J, K, M, N, P). Data presented as m
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conditions that promote differentiation into neuronal and glial

lineages. Spontaneous differentiation in growth factor-free

base media or 1% fetal bovine serum (FBS) resulted in a mixture

of neurons (HuC/D+) and glia (CD44+/S100b+; Figures 2J–

2M). Astrocyte media33 (AM) produced GFAP+ glial cells after

60 days in culture. SNaP multipotency was confirmed by

scRNA-seq that revealed 7 cell clusters, including intermediate

progenitors, excitatory neurons, and glial progenitors after

2 weeks in base media (Figures S3A and S3B). Comparison to

an integrated reference of human fetal and adult brain cells34,35

showed that differentiated SNaPs resembled many fetal in vivo

cell types, primarily NPCs, intermediate progenitors, and gluta-

matergic neurons (Figures S3C and S3D). SNaPs were capable

of self-renewal—defined by the ability to dividewhile maintaining

a multipotent state—as depicted by clonal proliferation and

differentiation assays (Figures 2N–2Q). This feature is character-

istic of the neuroepithelium, suggesting that SNaPs functionally

resemble the earliest neural cell type to populate the developing

brain.

Differentiated excitatory neurons form synaptic connections

and display network activity in vivo; so, we stained 30-day-old

spontaneously differentiated cultures with protein markers of

cortical glutamatergic neurons. Most neurons co-expressed

upper cortical layer markers BRN2 and CUX2 (85.77% and

82.90%) and a few expressed deep layer marker CTIP2

(3.70%; Figure S3E). Inhibitory neuron marker GAD67 was not

detected (Data not shown). Neurons co-cultured with mouse

glia displayed characteristic punctate expression of the synaptic

marker Synapsin I (Figure S3F) and formed functional synaptic

networks over several weeks (Figures S3G–S3M). Similar to fetal

NPCs, SNaPs can spawn mature neurons that organize into

active synaptic networks.

Villages confirm consistent SNaP identity across
different genetic backgrounds
We assessed whether the SNaP method is amenable to cell

village experiments by testing the reproducibility of induction

on 46 hESC and 60 iPSC lines (Table S1). The vast majority

(102/106; 96.2%) of lines were successfully converted to stable

NPC cultures as defined byR75% NESTIN+/PAX6+/SOX1+ and

%0.1%OCT4+ cells at passages 1–3 (Figures S4A–S4C). To test

intra-line reproducibility, we induced three hiPSC and one hESC

lines in duplicate and observed high NPC marker expression in

all replicates (Figure S4D). All SNaP lines assayed for multipo-

tency (30/30) differentiated into neurons and glia (Figures S4E

and S4F). Thus, the SNaP protocol readily and consistently gen-

erates human NPCs from many disparate donors.

We built two SNaP villages from 21 and 44 hESC donors

(SNaP-21 and SNaP-44 villages respectively; Figure 3A) that
h post-induction, after first passage, and after passage 10.

ssage. Magnified images of a (F) ZO-1+ and (G) SOX1+ rosette structure.

/posterior genes and (I) dorsal/ventral genes.

mitotic neurons after 2 weeks in base media and (K) glial cells after 7 days in

uC/D) and glial (CD44, S100b, and GFAP) protein markers in base media or 1%

STIN+ cells 14 days after plating of a single SNaP. (O) Quantification of N. (P)

days post-differentiation. (Q) Percentage of wells that contain neurons, glia, or

ean ± SD.
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(A) Cell villageworkflow.Multiple donor lines were induced to SNaPs individually before pooling. Donor re-identified gene expressionmatrix was used for cell type

comparisons.

(legend continued on next page)
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passed NPC protein marker-based QC metrics. We processed

123,988 SNaPs for scRNA-seq, re-identifying donor-of-origin

for each sequenced cell via Dropulation. We simultaneously

compared the cellular identities of each donor’s cells to a refer-

ence in vivo human brain dataset34,35 using UMAP plots; SNaPs

predominantly clustered with fetal NPCs (Figure 3B). In vitro and

in vivo NPCs expressed progenitor markers HES1 and SOX2 but

exhibited minimal expression of differentiated neuronal or astro-

cytic genes (Figure 3C). SNaPs displayed high in vivo fetal NPC

similarity scores (>0.8; Figure 3D) using cell-type classification

methods.36 Most (84.1%) SNaP-21 village cells resembled hu-

man fetal NPCs most closely, and this degree of similarity was

consistent across all lines (Figures 3E, 3F, and S4G). Compara-

ble results were observed in the SNaP-44 village (Figures S4H

and S4I).

The question remained, however, exactly which type of fetal

NPC our SNaPs resembled. We repeated this analysis using an

integrated scRNA-seq dataset that contained only fetal NPC

subtypes. The example output (GENEA43) shows cell identity

scores that are highest for the earliest detected fetal NPC sub-

type known as ‘‘RG-early’’ (5–8 post-conception weeks or

pcw; Figure 3G). This was consistent across the SNaP-21 village,

in which 90.0% of all cells most closely resembled these neuro-

epithelial RG-early cells and 8.0% were assigned to the ‘‘RG-

div1’’ identity (11–21 pcw; Figures 3H and 3I). Thus, our method

can reproducibly generate an in vitro cell type that is transcrip-

tionally similar to in vivo neuroepithelial cells.

To assess the reproducibility of SNaPmultipotency in a village,

we pooled 37 hESC-derived SNaP lines and allowed for 16 days

of spontaneous differentiation prior to scRNA-seq-based in vivo

comparison (Figures S5A and S5B). As expected, all lines pro-

duced neural and glial cells though at highly variable ratios (Fig-

ure S5C). These findings suggest that some lines may be better

than others for generating certain differentiated brain cell types,

which has important implications for the experimental design of

future comparative differentiation assays.

Effects of common genetic variation on RNA expression
Cell village analysis, by neutralizing most cell-extrinsic forms of

variation in cultures, facilitates the identification of natural ge-

netic variants that affect gene expression. To map expression

QTLs (eQTLs) in human NPCs, we tested all genes for associa-

tions between expression levels and nearby SNPs among the

donors in the SNaP-44 village using a linear regression model37

(Figure 4A). Using a 10 kb window around each gene and aminor

allele frequency of 0.20, we detected 24,130 nominally signifi-

cant eQTLs (p < 1e�05), including 993 genes that exhibited

analysis-wide significant association to one or more SNPs

(‘‘eGenes,’’ q-value < 0.05). We validated our findings through

comparisons to eQTLs detected by bulk RNA-seq of human
(B) UMAP cluster plot of Village-21 SNaPs and reference fetal and adult brain ce

(C) NPC marker expression limited to SNaP/Fetal NPC cluster. Excitatory neuron

enriched in non-SNaP/Fetal NPC clusters.

(D) Representative data (GENEA43 line) showing high fetal NPC cell identity scor

(E and F) Quantification of computed cell type classification. (E) Seurat 3.0 co

donor basis.

(G–I) Comparison to in vivo fetal NPC cell types. (G) Representative data (GENE

computed NPC subtype classification for all cells (5,053 total) in Village-21 and (
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brain samples and found high concordance (>90%) with prenatal

and adult brain eQTLs38,39 by sign test, which asks if the direc-

tion of association for variant-gene pairings is the same in both

datasets (Figure 4B). The list of eGenes includes neurodevelop-

mental disorder candidate genes MAPK3 and DMPK, as well as

the fetal brain transcriptional activator CHURC1 (Figure 4C).

Filtering out cells that were classified as non-NPCs had minimal

effect on the number and identity of eGenes detected (Document

S1; Data S4). Cell village eQTL analysis, therefore, uncovered

genetic influencers of transcript levels in human NPCs that

also affect neurodevelopmental phenotypes in vivo.

Several of the eQTLs we discovered in SNaPs corresponded

to previously discovered genetic effects on cognitive traits

and brain disorders. For example, genotype at the SNP

rs79600142 associated with the expression of the readthrough

transcript LINC02210-CRHR1—which encodes a protein that

shares sequence identity with corticotropin releasing hormone

receptor 1—in SNaPs (Figures 4D and 4E); this SNP was the

top hit from a genome-wide association study (GWAS) for human

cortical surface area.40 The schizophrenia risk SNP rs452395741

associates in our analysis with expression of the SRR gene en-

coding serine racemase, which converts L-serine to D-serine

to modulate NMDA receptors42 (Figure 4F). We also identified

eQTLs for which the same SNPs have been found to associate

with cognitive performance (rs1131017), Parkinson’s disease

(rs2942168), and depression (rs61990288; Document S1; Data

S4). The fact that cell village analysis even at this modest sample

size detected influential variants in important neurodevelopmen-

tal genes suggests that larger cell villages may illustrate more

disease-influencing biology in NPCs.

Differential susceptibility to Zika virus infection across
donor lines
Using SNaPs, CRISPR screens, and cell villages, we sought to

identify genetic effects on a specific cellular phenotype—the

vulnerability of human NPCs to the neurotropic ZIKV that was

made famous by recent outbreaks in the Americas.43 Prenatal

exposure to this mosquito-borne virus can result in congenital

Zika syndrome (CZS), which is characterized by microcephaly

and developmental delay.44–46 Interestingly, only 30% of prena-

tal infections resulted in CZS.47,48 Although several factors could

potentially explain this observation,49,50 human genetic diversity

may significantly contribute to differential responses to this

pathogen.51–54

ZIKV preferentially targets proliferating NPCs.2,55 We verified

that SNaPs model ZIKV neuropathogenesis by immunostaining

for ZIKV envelope protein (4G2) at 54 h post-infection (hpi) with

the original MR-766 Uganda (ZIKV-Ug) and modern Puerto Rico

(ZIKV-PR) isolates (Figures 5A and 5B). ZIKV-Ug killedmore cells

than ZIKV-PR (Figure S6A), consistent with previous reports.56,57
lls.

(NEUROD1), inhibitory neuron (DLX1), and astrocyte (SPARCL1) markers are

es for SNaPs.

mputed cell type classification for all SNaPs in Village-21 and (F) on a per

A43) showing high ‘‘RG-early’’ cell identity scores for SNaPs. (H) Seurat 3.0

I) on a per donor basis.



A Donor

Donor re-identified Gene 
Expression Matrix

(from Dropulation)

G
en

e

1

...

4
3
2

5

1 2 1 3 2 104
12   55   10   36   24          67
3     7     2    13    1           22
32   65  120  72   14          40
5    12    4    11   30          16
0     2     1     0     0            4

21   17    0     0    41          89

...

Normalized Meta-cell Gene 
Expression Matrix

Donor

1

6

4
3
2

5

1 2 3 104

G
en

e

11.6    61.2   34.3         22.7
2.6    14.0   13.9          2.2
68.1   32.5   66.5         17.8
 4.5    14.9   10.4          29.1
0.8     3.2     0.1            2.3

16.6   55.3    1.1           31.7

...

...

Single Nucleotide
Polymorphism (SNP) Matrix
(from whole genome sequencing)

Donor

1

6

4
3
2

5

1 2 3 104

SN
P

CC  TT   TT         CT
AA  GG  GG        AA
TT   TG  TT         GG
AA   AC  AC        CC
GG  AG  AG        AA

CT   TT  CC        CT

...

... 0

10

20

30

40

Ex
pr

es
si

on

AA AC CC

SNP #4

Expression quantitative
trait locus (eQTL)

rs4523957

Schizophrenia GWAS
Ripke et al. (2014) 

E F

Neurodevelopmental eGenes in Village-44

B

p = 1.11e-12
r2  = 0.704
E = 0.184

Ex
pr

es
si

on

1 2 3
0

1

2

3

4

TT TC CC
p = 7.70e-13
r2  = 0.709
E = -0.225

1 2 3
0

2

4

6

8

10

GG GA AA 1 2 3
0

1

2

3

4

CC CT TT
p = 2.28e-14
r2  = 0.754
E = -0.200

60

1 2 3
0

20

40

AA AC CC

MAPK3
chr16:30123335T>C

rs28529403

CHURC1
chr14:64938664G>A

rs12172810

DMPK
chr19:45761771C>T

rs8112282

EIF5A
chr17:7304645A>C

rs7503161

p = 1.60e-13
r2  = 0.730
E = -0.267

SRR SGSM2

SMG6 MNT

METTL16RTN4RL1
Chromosome 17 (Mb)

1.90 2.00 2.10 2.20 2.30 2.40

-lo
g1

0 
p-

va
lu

e

0

2

4

6

8

10

C D Brain GWAS hits in Village-44

p = 3.50e-06 
r2 =  0.404
E = -0.141

Index SNP D’ = 0.99 

Cortical surface area GWAS
Grasby et al. (2021)

0

6

12

18

24

30

36

Chromosome 17 (Mb)
44.1543.65 43.9543.85 44.0543.75

-lo
g1

0 
p-

va
lu

e rs79600142

SPPL2C
LINC02210-CRHR1 MAPT

p = 2.92e-17 
r2 =  0.820
E = 0.443

Index SNP D’ = 0.97 

rs4523957
SRR gene

chr17:2305605G>T
LINC02210-CRHR1
chr17:45820356T>C

rs79600142

Ex
pr

es
si

on
1 2 3

0

1

2

3

4

5

TT TC CC
0

1

2

3

4

5

GG GT TT

85 90 95 100

Testis
Skin

Thyroid
Cerebellum

Nucleus accumbens
Spinal cord

Frontal cortex (BA9)
Hippocampus

Prefrontal cortex
Prefrontal cortex

Concordance (%)

Sign Test

Adult
Adolescent
Fetal

Figure 4. eQTL discovery in SNaP villages

(A) eQTL detection workflow. scRNA-seq measurements for individual cells are summed into meta-cells and cross-referenced to SNP genotypes for eQTL
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ZIKV RNA levels increased over time in the culture media of in-

fected SNaPs, suggesting multiplication of infectious particles

(Figures S6B and S6C). The expression of several immunity-

related genes in the host cells was increased at 60 hpi, and there
was significant overlap between our results and a study that used

the embryoid body induction method to generate NPCs58 (Fig-

ure S6D; Document S1; Data S5). Thus, SNaPs model the ex-

pected transcriptional and functional responses to ZIKV.
Cell Stem Cell 30, 1–21, March 2, 2023 9
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Figure 5. CRISPR screen identifies potential genetic contributors to ZIKV infectivity variation across donors

(A) Immunostaining of ZIKV 4G2 envelope protein at 54 hpi.

(B) Quantification of SNaP infections with ZIKV-Ug and ZIKV-PR at 54 hpi.

(legend continued on next page)
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To quantify inherent differences in ZIKV susceptibility across

donors, we infected 24 hESC-derived SNaP lines cultured in

an arrayed format with ZIKV-Ug (multiplicity of infection or

MOI = 1; Figure 5C). We observed a surprisingly high degree of

variability (mean infectivity rates = 0.7%–99.4%), suggesting

that cell-intrinsic factors make a large contribution to inter-

individual variation in susceptibility. We sought to understand

this variation using natural genetic variation and synthetic ge-

netic perturbations, which we hypothesized might lead to the

same genes.

Genome-wide CRISPR-Cas9 screens reveal ZIKV host
factors in human NPCs
Viruses commandeer cellular proteins at each stage of their life

cycles to propagate and spread to additional cells. The specific

host biological processes affected by these manipulations differ

based on virus and cell type. We performed genome-wide

CRISPR-Cas9 positive selection survival screens to determine

which genes are important for ZIKV infection in SNaPs and to

limit the number of potential genes that could explain variation

in ZIKV susceptibility. We transduced SW7388-1 SNaPs with

the Brunello human CRISPR knockout pooled library packaged

in the LentiCRISPRv2.0 vector (Figure 5D). Transduced SNaPs

were treated with mock-infection media, ZIKV-Ug (MOI = 1),

or ZIKV-PR (MOI = 5; higher MOI was used to account for

decreased virulence). DNA was extracted from samples

10 days later for sequencing, and gRNA enrichment/depletion

analysis across conditions was completed. High gRNA coverage

(<0.15%missing gRNAs across replicates) and a strong correla-

tion among replicates testified to the quality of the screen (Fig-

ure S6E; Document S1; Data S6).

Using the redundant siRNA activity (RSA) statistical method,59

we detected 102 and 765 candidate host factor genes in the

ZIKV-PR and ZIKV-Ug infections, respectively (Figures 5E and

5F). Strong effects were observed in genes detected in whole-

genome experiments performed using conventional hPSC-

derived NPCs,60 including heparan sulfate biosynthesis, endo-

plasmic reticulum membrane complexes, and the oligomeric

Golgi complex. Consistent with recent reports, our screen nomi-

nated ITGAV and ITGB5 (Integrin aVb5)—but not the TAM recep-

tor AXL—as entry factors in NPCs.61,62 We also identified 195

and 147 genes that rendered cells more sensitive to death by

ZIKV-PR and ZIKV-Ug, respectively, including type I interferon-

responsive genes IFNAR1-2 and IFITM3 (Figures 5G and 5H).

In total, 125 genes were significantly enriched (host factor) or

depleted (restriction factor) in both screens.

Several hits were confirmed through arrayed infectivity and

viability assays performed in CRISPR-edited SNaPs that were

generated from a constitutive-Cas9 H1 hESC line (Figures 5I,

5J, and S6F–S6K). Along with the discoveries from recent drug

screens in human NPCs,63,64 our results should be considered
(C) Quantification of arrayed immunocytochemistry-based infectivity assays acro

(D) Design of whole-genome CRISPR-Cas9 screens.

(E and F) RSA plots depicting gene level results of the enriched host factor gene

(G and H) RSA plots depicting gene level results of the depleted restriction facto

(I and J) Screen validation. H1-Cas9 SNaPs were transduced with individual

(J) quantification at 54 hpi. Dashed line denotes adjusted p value < 0.05 (E–H) or in

way ANOVA with Dunnett’s test for multiple comparisons. Data presented as me
when developing novel clinical therapies against CZS. These

data also nominate a small number of genes as potential media-

tors of differential SNaP viral susceptibility.

rs34481144 is a functional QTL influencing NPC
sensitivity to ZIKV infection
Common genetic variation that strongly affects the expression of

a viral-restricting host gene could also affect host resistance. We

hypothesized that our screens of synthetic perturbations and

natural genetic variation might converge on one or more genes.

Cross-referencing the 993 eGenes and the 125 shared ZIKV ge-

netic factors revealed an overlap of 7 genes (Figure 6A). Of these,

the genetic variation at IFITM3 had the strongest effect size: cells

from donors homozygous for the low-expression allele ex-

pressed IFITM3 at less than 1/5 the level of cells homozygous

for the high-expression allele (Figure S7A). IFITM3 is believed

to protect cells by shuttling viral-containing endosomes to

the lysosome for degradation.65 IFITM3 knockdown enhances

ZIKV infection rates, whereas overexpression virtually eliminates

viral replication in cancer cell lines.66,67 The influence of natural

variation in IFITM3 on flavivirus infectivity, however, has yet to

be explored.

We examined which IFITM3 SNP was most likely responsible

for the varied expression levels through pairwise linkage disequi-

librium (LD) analysis. Four SNPs were in high LD with the index

SNP and associated to IFITM3 expression with similarly large

effect size (|E| > 0.6; Figure S7B). The only SNP located in a

non-intronic region—rs34481144—is in the 50-UTR promoter

segment of IFITM3 and has been shown to influence expression

of this gene,68 suggesting that this is the specific variant respon-

sible for the effect. SNaPs from donors homozygous for the

reference allele (C) of rs34481144 expressed IFITM3 at levels

4.8-fold higher than donors homozygous for the alternate allele

(T; Figure 6B). We hypothesized that the reference allele of

rs34481144 may confer protection from ZIKV infection by

enhancing expression of this antiviral gene (Figure 6C).

To test this idea, we exposed SNaP Village-44 to ZIKV-Ug

(MOI = 1) or mock media (Figure 6D). At 54 hpi, we used fluores-

cence-activated cell sorting (FACS) to partition cells into four

fractions based on ZIKV envelope protein signal intensity

(ZIKV-negative, -low, -mid, and -high) before harvesting pellets

for DNA extraction. Census-Seq19 estimated each donor’s

cellular contribution to the different fractions and showed that

rs34481144TT donor cells were greatly over-represented in

the ZIKV-positive populations relative to the ZIKV-negative

pool, whereas rs34481144CC cells displayed the opposite rela-

tionship (Figures 6E, 6F, and S7C–S7E). No such relationship

was observed with other antiviral/host factor SNPs. The IFITM3

SNP had no association with the cell-type composition of

NPC cultures before infection, meaning that genotype was

unlikely to influence SNaP induction efficiency (Figure S7F).
ss donors (ZIKV-Ug, MOI = 1) at 54 hpi.

s from (E) ZIKV-PR and (F) ZIKV-Ug screens.

r genes from (G) ZIKV-PR and (H) ZIKV-Ug screens.

gRNAs and exposed to ZIKV-Ug (MOI = 1). (I) Representative images and

fectivity levels for non-targeting gRNA controls (J). Scale bar, 50 mm (A, I). One-

an ± SD. N.S. = not significant, ****p < 0.0001.
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Figure 6. SNaP sensitivity to ZIKV associates to a common SNP in IFITM3

(A) Workflow combining Village-44 eQTL analysis with CRISPR screen results.
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(C) Schematic model of hypothesis in which decreased expression levels of IFITM3 result in increased ZIKV infectivity in SNaPs.

(legend continued on next page)
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These data support the hypothesis that the rs34481144-C allele

renders NPCs less vulnerable to ZIKV compared with the

rs34481144-T allele.

We next asked whether the strong effect of this SNP’s geno-

type on ZIKV susceptibility is cell-intrinsic or arises in an unex-

pected way from the village design. We analyzed the aforemen-

tioned arrayed SNaP infectivity data (Figure 3B) and again found

the same significant relationship between rs34481144 genotype

and ZIKV infectivity (Figures 6G and 6H). The cell village and

arrayed culture experiments exhibited strong concordance

(Figure S7G). In a separate replication set of 36 arrayed SNaP

lines, rs34481144 genotype explained 58.8% and 29.4% of the

inter-individual variation in ZIKV-Ug and ZIKV-PR infectivity,

respectively (Figures 6I and S7H).

The focus on rs34481144 was driven by our CRISPR-Cas9

and eQTL screens. We wondered whether this SNP’s effect on

ZIKV infectivity was sufficiently strong to have been identifiable

in an unbiased search and performed genome-wide association

analysis on the arrayed infectivity data. rs34481144 was the

genome’s top-scoring SNP in the ZIKV-Ug dataset, reaching

genome-wide significance even in this modest 36-donor sample

(p = 9.0e�10; Figure 6J). rs34481144 also associated strongly

with ZIKV-PR infectivity, but just below genome-wide signifi-

cance (p = 3.2e�07; Figure S7I). These results demonstrate

that a genetically variable, cell-intrinsic property of human

NPCs is the major source of inter-individual variation in their sus-

ceptibility to a viral pathogen.

CRISPR screening enumerates NPC fitness genes
Although ZIKV contributes to NDD etiology, themajority of cases

are of genetic origin—especially for ASD. Recent studies have

highlighted dysregulated NPC proliferation in ASD disease

mechanisms.69–73 However, the full set of genes that influence

this phenotype is not known. To identify NPC growth/fitness

genes, we compared the gRNA enrichment in day 10 versus

day 0 mock-treated cells from our whole-genome CRISPR-

Cas9 screen (Figure 5D).

We identified 123 genes that enhanced growth upon ablation

including known proliferation regulators NF2 and PTEN, and

novel factors KIAA1109 andCACHD1 (Figure 7A). At a functional

level, the genes identified in the screen contribute to primary cilia

formation, neural tube development, and WNT signaling (Docu-

ment S1; Data S7). We validated 23 genes in a secondary ar-

rayed screen, in which 39/42 (92.9%) of the nominated gRNAs

resulted in a significant decrease in population doubling times;

we validated 3 of 3 genes in an additional cell line (H1;

Figures S8A and S8B). Our screen also detected 1,449 genes

essential for cell viability (BF > 10).

SNaP proliferation genes were significantly enriched for

association with developmental delay74 (CHD7), ASD risk75–77
(D) SNaP Village-44 was infected with ZIKV-Ug (MOI = 1) or mock media.

(E) At 54 hpi, cells were FAC sorted based on 4G2 signal intensity.

(F) Donor representation in each FACS fraction was measured by Census-seq. A

donors’ cells between the aggregated ZIKV-positive relative to ZIKV-negative fra

growth rates.

(G–I) Arrayed infectivity assays (ZIKV-Ug, MOI = 1). (G) Representative images fro

Quantification of 36 hiPSC-derived SNaPs. (J) Genome-wide association analysis

significance. Linear regression line in black with shaded error in gray (B, F, H, an
(TSC2), and tumor suppression78 (PTEN; Figure 7B). There was

no enrichment of genes associated with inflammatory bowel dis-

ease (IBD), suggesting that enrichment is restricted to disorders

of early brain development.41,79–81 These results validate the

importance of NPC proliferation genes in ASD and cancer.

Genome-wide screens have been performed in many human

cell types,82 but it is unclear which fitness/essential genes are

shared across tissues. A majority of our NPC fitness genes

(101/123) were unique compared with hESCs and neurons83–85

(Figure S8C). These cell types shared expression of only 4 genes,

including NF2 and PTEN, whereas TAOK1 was common to

neurons and NPCs; 92 genes were non-tumor suppressor,

pro-growth NPC-specific genes.86 Among essential genes, the

overlap of NPCs with other cell types was high (990/1,449 be-

tween NPCs and core essential genes; Figure S8D).83–85,87,88

There were 187 genes exclusively required for NPC survival,

including the GTPase RHOA, the human-specific cortical neuro-

genesis gene NOTCH2NL,89 and aquaporins AQP5/7. Thus,

these large-scale fitness screens uncovered NPC-specific ge-

netic regulators of growth and maintenance.

Finally,wesetout tounderstandhowgenetic variationmay influ-

ence the expressionof theseNPCgrowth and survival genes iden-

tified in our screen by cross-referencing CRISPR screen results

with Village-44 eQTL analysis. We detected eQTLs in 88 SNaP

essential genes and 7 proliferation genes (Figures S8E and S8F;

Document S1; Data S4). Future experiments investigating the im-

plications of these variants on NPC cellular traits are warranted.

CACHD1 regulates NPC proliferation and differentiation
The voltage-gated calcium channel regulator CACHD190 has

recently been associated with severe brain malformations and

NDDs,91 and our CRISPR screen results suggested a role for

CACHD1 in NPC proliferation. This protein serves as a modulator

of the T-type Ca2+ channel CaV3.1,
92 which is the protein product

of the NDD risk geneCACNA1G.93–95 CaV3.1 plays critical roles in

Ca2+ homeostasis, cell division, and synaptic plasticity.96 Given

the potential links between CACHD1 and CaV3.1-mediated neural

functions, we studied the effects of CACHD1 gene disruption on

neurogenesis using cerebral organoids.97 We quantified size

over 28 days and detected a significant increase in the size of

CACHD1-edited organoids as early as day 9, when NPCs are

the predominant cell type (Figures 7C and 7D). There were no dif-

ferences in the number of SOX2+ NPCs at day 28, though one of

the two tested CACHD1 gRNAs increased the number of cycling

KI67+ NPCs at this stage, suggesting possible delays in differenti-

ation and cell cycle exit (Figures 7E–7G). CACHD1 editing drasti-

cally reduced the number of TBR1+ subplate neurons and

TBR1+:SOX2+ cell ratio compared with NT gRNA controls

(Figures 7H–7J), indicating significant defects in neurogenic po-

tential.98 These findings highlight the importance of CACHD1 in
ssociation between genotype for rs34481144 and the distribution of different

ctions. All values were normalized to mock to control for donor differences in

m 24 hESC-derived SNaP lines. Scale bar, 50 mm. (H) Quantification of (G). (I)

of arrayed ZIKV-Ug infectivity (n = 36 donors). Red line denotes genome-wide

d I).
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(A) RSA analysis of genome-wide CRISPR fitness screen. Dashed line denotes adjusted p value < 0.05.

(B) Summary of disease gene enrichment analysis. Red dots denote gene lists with significant overlap with SNaP proliferation hits.

(legend continued on next page)

ll
OPEN ACCESS Resource

14 Cell Stem Cell 30, 1–21, March 2, 2023

Please cite this article in press as: Wells et al., Natural variation in gene expression and viral susceptibility revealed by neural progenitor cell villages, Cell
Stem Cell (2023), https://doi.org/10.1016/j.stem.2023.01.010



ll
OPEN ACCESSResource

Please cite this article in press as: Wells et al., Natural variation in gene expression and viral susceptibility revealed by neural progenitor cell villages, Cell
Stem Cell (2023), https://doi.org/10.1016/j.stem.2023.01.010
neurogenesiswhile establishingSNaPsasan in vitrohumanmodel

for future mechanistic studies of relevant disease mechanisms.

DISCUSSION

Here, we tried to advance in vitro experimental systems to

improve our understanding of the relationships among genes,

molecules, and cellular phenotypes. Our work using cell villages

uncovered a common SNP allele (rs34481144-T) in the IFITM3

promoter that accounted for nearly 60% of the variation in

ZIKV infectivity of human NPCs across dozens of genetic back-

grounds. IFITM3 SNPs rs34481144 is associated with the

severity of influenza infections,68 suggesting that the biomedical

significance of this genetic variation may be far broader than

resistance to ZIKV. In PBMCs, the presence of the T allele at

rs34481144 alters binding of transcription factors and reduces

promoter activity, leading to reduced baseline expression of

IFITM3.68 We believe that the rs34481144-T allele confers similar

vulnerabilities to developing human brain cells exposed to ZIKV.

Intriguingly, frequencies of the rs34481144-T allele are highly

variable across different global ancestries, ranging from

46% in Europe to 0.6% in regions in which flaviviruses are

endemic.4,99 It is possible that evolutionary selection has histor-

ically favored the rs34481144-C allele in places with high rates of

mosquito-borne RNA virus infections. Climate-change-induced

spread of mosquito vectors into Europe100 has the potential to

introduce flaviviruses to populations in which the IFITM3 risk

allele is far more common. Screening for genotype at the

rs34481144 locus might be useful in identifying at-risk individ-

uals during these predicted future outbreaks. Enhancement of

IFITM3 expression levels is worth consideration as a potential

therapeutic approach.101,102

These results were facilitated by our ability to make human

NPCsusinga48-h inductionprotocol,which isconsiderably faster

than conventional methods (e.g., dual SMAD). The advantages of

the SNaP protocol can be largely attributed to the activities of the

neuralization factorNGN2.103–105 ExogenousexpressionofNGN2

generates neurons in vitro from hPSCs, though the applicability of

these cells to disease modeling was recently challenged.24 We

present evidence supporting the developmental fidelity of

NGN2-neurons and show, contrary to this recent report, that

they pass through a proliferative progenitor stage.

Outside the realm of human-viral interactions, our SNaP ex-

periments provided biological insight into neurodevelopment.

The detection of eQTLs affecting critical neurodevelopmental

genes and GWAS loci sets the stage for subsequent investiga-

tions into the molecular and cellular mechanisms connecting

these variants to specific traits and diseases. Furthermore, our

CRISPR screen highlighted the importance of NPC expansion

in NDD etiology and could help explain the link between ASD

and brain overgrowth. Interestingly, the effects of CACHD1 ge-

netic disruption on NPC proliferation, differentiation, and cere-
(C and D) Increased size of CACHD1-depleted cerebral organoids. (C) Quantifica

(E–J) Organoid immunohistochemistry. (E) Representative confocal images of se

NPC marker SOX2 and proliferative cell marker KI67. Quantification of (F) NPCs

TBR1 immunostains. Quantification of (I) TBR1+ neurons and (J) neuron-to-NPC ra

tests for multiple comparisons (C), and one-way ANOVAwith Dunnett’s tests for m

1 mm (D) or 50 mm (E, H). Data presented as mean ± SD. *p < 0.05, **p < 0.01, *
bral organoid size andmorphology are strikingly similar to recent

observations made in the PTENmutant model of ASD,106 hinting

at potential convergence in underlying disease cellular mecha-

nisms. The clinical implications of our findings are further

buttressed by recent human patient data connecting CACHD1

to a novel syndromic NDD.91 Studies of the mechanisms by

which CACHD1 disruption affects neurogenesis are needed.

Population-scale in vitro culture systems provide promising

ways to capture the influence of genetic variation on a wide

range of cell types and phenotypes.19,22,69,107 We hope that

these and other new approaches open opportunities to find

and characterize the many genetic and environmental factors

that shape human development.

Limitations of the study
The SNaP approach efficiently generates cells that resemble

NPCs at the transcript, protein, and functional level. These cells

show strong preference for differentiating into excitatory rather

than inhibitory cortical neurons, which is to be expected given

the propensity for neurogenenin-2 overexpression to produce

glutamatergic neurons18 and the fact that most cortical interneu-

rons originate from subcortical structures.108 We, therefore,

cannot support the use of this cellular model for investigations

centered on interneuron development and function. Further-

more, we overexpressed mouse Ngn2 to generate NPCs; we

have yet to show that SNaPs can be made using human

NGN2. Finally, we should note that while the Dropulation algo-

rithm confidently distinguishes among close relatives, it is not

able to distinguish between monozygotic twins or clonal lines

derived from the same donor. These limitations should be

considered when designing village explorations.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse anti-Nestin (1:1000) Stem Cell Technologies Cat #60091; RRID: AB_2905494

Rabbit anti-PAX6 (1:500) BioLegend Cat #901302; RRID: AB_2749901

Mouse anti-OCT4 (1:1000) Stem Cell Technologies Cat #60093; RRID: AB_2801346

Rabbit anti-SOX1 (1:1000) Stem Cell Technologies Cat #60095; RRID: AB_2801347

Mouse anti-SOX2 (1:100) R&D Systems Cat #MAB2018; RRID: AB_358009

Rabbit anti-ZO1 (1:200) Life Technologies Cat #617300; RRID: AB_2533938

Rabbit anti-FOXG1 (1:400) Abcam Cat #18259; RRID: AB_732415

Rabbit anti-KI67 (1:500) ThermoFisher Cat #MA5-14520; RRID: AB_10979488

Donkey anti-mouse Alexa647 (1:1000) Life Technologies Cat #A-31571; RRID: AB_162542

Donkey anti-rabbit Alexa555 (1:1000) Life Technologies Cat #A-31572; RRID: AB_162543

Mouse anti-HuC/D (1:200) Life Technologies Cat #A-21271; RRID: AB_221448

Rat anti-CD44 (1:400) eBioScience Cat #17-0441-82; RRID: AB_469390

Mouse anti-S100b (1:1000) Sigma Aldrich Cat #S2532; RRID: AB_477499

Rabbit anti-GFAP (1:100) Millipore Cat #AB5804; RRID: AB_2109645

Chicken anti-MAP2 (1:500) Abcam Cat #ab5392; RRID: AB_2138153

Rabbit anti-Synapsin I (1:1000) Millipore Cat #AB1543; RRID: AB_2200400

Rabbit anti-BRN2 (1:300) Abcam Cat #ab137469; RRID: AB_2929002

Rabbit anti-CUX2 (1:200) Abcam Cat #ab130395; RRID: AB_11155898

Rat anti-CTIP2 (1:1000) Abcam Cat #ab18465; RRID: AB_2064130

Donkey anti-Mouse Alexa555 (1:1000) Life Technologies Cat #A-31570; RRID: AB_2536180

Donkey anti-Mouse Alexa647 (1:1000) Life Technologies Cat #A-31571; RRID: AB_162542

Goat anti-Rat Alexa555 (1:1000) Life Technologies Cat #A-21434; RRID: AB_2535855

Goat anti-Chicken Alexa647 (1:1000) Life Technologies Cat #A-21449; RRID: AB_2535866

Mouse anti-D1-4G2 envelope (1:100-1:1000) Millipore Cat #MAB10216; RRID: AB_827205

Goat anti-Mouse HRP-conjugated secondary Abcam Cat #ab6789; RRID: AB_955439

Donkey anti-mouse Alexa488 (1:1000) Life Technologies Cat #A-21202; RRID: AB_141607

F-Actin CytoPainter Phalloidin-iFluor 555 (1:10000) Abcam Cat #ab176756; RRID: AB_2929003

Rabbit anti-TBR1 (1:200) Cell Signaling Tech Cat#49661S; RRID: AB_2799364

Bacterial and virus strains

ZIKV-Ug (MR766) ATCC Cat #VR-1838

ZIKV-PR (PRVABC59) ATCC Cat #VR-1843

Chemicals, peptides, and recombinant proteins

mTeSR stem cell media Stem Cell Technologies Cat #85850

Geltrex basement membrane matrix Life Technologies Cat #A1413301

Accutase Innovative Cell Technologies Cat #AT104

ROCK inhibitor Y-27632 Stemgent Cat #04-0012

MEM-NEAA Life Technologies Cat #10370088

B27 minus Vitamin A Life Technologies Cat #12587010

N2 Supplement Life Technologies Cat #17502048

Recombinant human EGF R&D Systems Cat #236-EG-200

Recombinant human basic FGF Life Technologies Cat #13256029

DMEM/F12 ThermoFisher Cat #11320082

Glutamax ThermoFisher Cat #10565018
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Doxycycline Sigma-Aldrich Cat # D9891

LDN-193189 Stemgent Cat #04-0074

SB431542 Tocris Cat #1614

XAV939 Stemgent Cat #04-00046

Puromycin ThermoFisher Cat #A1113803

DAPI Life Technologies Cat #D1306

Critical commercial assays

CellTiter Glo 2.0 kit Promega Cat #G9242

RT2 Profiler PCR Array Human Antiviral

Response plate

Qiagen Cat #PAHS-122ZE-4

Human PSC Transcription Factor Analysis Kit BD Biosciences Cat #560589

TruSeq NanoDNA Library Prep for NeoPrep Illumina Cat #NP-101-9001DOC

Nextera DNA Library Prep Illumina Cat #FC-121-1030

10X Chromium Single Cell 3ʹ Reagents V2 10X Genomics Cat #PN-120237

Deposited data

WGS and scRNA-seq for hiPSCs (Village-104) ANVIL (dbGAP Accession:

phs002032)

Access request: https://anvilproject.org/data/

studies/phs002032

WGS and scRNA-seq for hESCs and hESC-

derived cells (SNaP-44)

DUOS (Accession: DUOS-

000121)

Access request: https://duos.broadinstitute.org

Experimental models: Cell lines

Vero cells ATCC Cat #CCL-81

Human embryonic stem cells Various sources See Table S1

Human induced pluripotent stem cells Various sources See Table S1

Recombinant DNA

TetO-Ngn2-Puromycin Zhang et al.18 Marius Wernig lab (Stanford)

Ubq-rtTA Zhang et al.18 Marius Wernig lab (Stanford)

Software and algorithms

Dropulation This paper https://zenodo.org/badge/latestdoi/128078084

Census-seq Mitchell et al.19 https://zenodo.org/badge/latestdoi/128078084

voom-limma Ritchie et al.109 https://bioconductor.org/packages/release/

bioc/html/limma.html

smartSVA Chen et al.110 https://github.com/ehsanbehnam/SmartSVA

CAMERA Wu and Smyth111 https://bioconductor.org/packages/release/

bioc/html/limma.html

Seurat 3.0 Stuart et al.36 https://satijalab.org/seurat/

MatrixEQTL Shabalin et al.37 https://github.com/andreyshabalin/MatrixEQTL

PEER Stegle et al.112 https://github.com/PMBio/peer/wiki

eigenMT Davis et al.113 https://github.com/joed3/eigenMT

SNPnexus Oscanoa et al.114 https://www.snp-nexus.org/v4/

Enigma-Vis Shatokhina et al.115 https://enigma-brain.org/enigmavis/

LocusZoom Boughton et al.116 https://www.npmjs.com/package/locuszoom

RSA Konig et al.59 http://carrier.gnf.org/publications/RSA

BAGEL Hart and Moffat117 https://sourceforge.net/projects/bagel-for-

knockout-screens/

DESeq2 Love et al.118 https://bioconductor.org/packages/release/

bioc/html/DESeq2.html

CRISPRAnalyzer Winter et al.119 https://github.com/boutroslab/CRISPRAnalyzeR

R 3.5.3 R Foundation https://www.r-project.org/

GraphPad Prism 7.0 GraphPad Software Inc. http://www.graphpad.com/scientific-software/prism/
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Other

Ultra-Low Attachment 96-well Round Bottom plate Corning Cat #7007

QIAmp DNA Blood Maxi kit Qiagen Cat #51192
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RESOURCE AVAILABILITY

Lead contact
The lead contact for this paper is Steven McCarroll (smccarro@broadinstitute.org).

Materials availability
Reagents generated in this study are available from the lead contact, Steven McCarroll (smccarro@broadinstitute.org), with a

completed materials transfer agreement.

Data and code availability
d All codes and algorithms necessary for Dropulation analysis are available at https://zenodo.org/badge/latestdoi/128078084.

d Data from this publication, including read-level whole genome and single-cell RNA sequencing data, are organized at https://app.

terra.bio/#workspaces/convergentneuro-mccarroll-anvil/Broad_ConvergentNeuroscience_McCarroll_Nehme_Supplementary

VillageData.

d Here, we provide instructions for requesting access to scRNA-seq BAM, VCF, WGS BAM, and genomic array files generated

from hiPSCs (e.g., iPSC Village-104). Users should visit https://anvilproject.org/data/studies/phs002032 and click ‘‘Request

Access.’’ This will send the user to dbGAP (Accession number phs002032). Once granted access by dbGAP, the data can

be downloaded from this AnVIL workspace: https://anvil.terra.bio/#workspaces/anvil-datastorage/AnVIL_NIMH_Broad_

ConvergentNeuro_McCarroll_Eggan_CIRM_GRU_VillageData.

d For controlled access to scRNA-seq BAM, VCF, WGS BAM, and genomic array files generated from hESCs (e.g. SNaP Village-

44), users can apply for access through DUOS (https://duos.broadinstitute.org; Accession number DUOS-000121). Once

approved, the data can be downloaded from this Terra workspace: https://app.terra.bio/#workspaces/convergneuro-

mccarroll-anvil/Broad_ConvergentNeuro_McCarroll_Nehme_hESC_HMB_VillageData.

d Further information requests can be directed to Steven McCarroll (smccarro@broadinstitute.org)
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Stem cell culture
Human ESCs and iPSCs were obtained from various sources. All ESCs are registered in the NIH Human Embryonic Stem Cell Reg-

istry. Most iPSCs (e.g. CW1052, CW20012, CW20025, etc). were obtained from CIRM/FujiFilm Cellular Dynamics. Some iPSCs

(Mito22, Mito226, NFID1300, NFID1301, NFID1337, NFID_0176, SW510926-11, SW7388-1) were reprogrammed at the Broad Insti-

tute. All lines were authenticated—either by our lab or the providing entity—by genotyping, karyotyping, growth rate measurements,

and in vitro differentiation to establish pluripotency. The exact lines used for each experiment can be found in Table S1. Human ESCs

and iPSCs were maintained in mTeSR media (Stem Cell Technologies, 85850) on Geltrex basement membrane matrix (1:100; Life

Technologies, A1413301). Cells were split every 4-5 days (when they reached 80-90%confluency) using a 15minute/37�C incubation

in Accutase (Innovative Cell Technologies, AT104) followed by 1:10 dilution in mTeSR. For each passage, media was supplemented

with ROCK inhibitor Y-27632 (10 mM; Stemgent, 04-0012) for 12-24 hours after plating.

SNaP culture
Human SNaPs were maintained on Geltrex basement membrane matrix (1:100; Life Technologies, A1413301) in SNaP maintenance

media: DMEM/F12, Glutamax (1:100), MEM-NEAA (1:100; Life Technologies, 10370088), B27 minus Vitamin A (1:50; Life Technol-

ogies, 12587010), N2 Supplement (1:100; Life Technologies, 17502048), recombinant human EGF (10 ng/mL; R&D Systems,

236-EG-200), recombinant human basic FGF (10 ng/mL; Life Technologies, 13256029). Cells were split weekly by dissociating

with Accutase (Innovative Cell Technologies, AT104) and plating at 120,000 cells/cm2. For each passage, media was supplemented

with ROCK inhibitor Y-27632 (10 mM; Stemgent, 04-0012) for 12-24 hours after plating.

METHOD DETAILS

Human iPSC village
Human iPSC lines from 104 donors were maintained as independent cultures for one week. Cells were dissociated with Accutase,

counted using a Scepter Handheld Automated Cell Counter (Millipore Sigma, PHCC20060), and plated at equal proportions in a
e3 Cell Stem Cell 30, 1–21.e1–e13, March 2, 2023
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10 cm2 Geltrex-coated dish at 50,000 cells/cm2. For Dropulation experiments, cells were harvested 5 days post-plating and run

through the 10X Chromium Single Cell 3’ Reagents V2 system to isolate individual cells into droplets per vendor’s instructions

(10X Genomics; San Francisco, CA). Samples were then sequenced on a NovaSeq 6000 system (Illumina) using a S2 flow cell at

2 x 100bp.

Lentiviral transduction
TetO-Ngn2-Puromycin and Ubq-rtTA constructs were obtained from the Wernig lab (Stanford) before being packaged as high-titer

lentiviruses (Alstem, Richmond, CA). When hPSCs reached 80-100% confluency, they were dissociated with Accutase before being

re-suspended in lentivirus-containing mTeSR media supplemented with Y-27632 at a range of MOI = 1 to MOI = 3. Cells were then

plated on Geltrex-coated 12-well plates at 500,000 cells per well in a total volume of 750 ml/well. After 18-24 hours, lentiviral media

was aspirated, and cells were fed with mTeSR media and maintained as described above. Transduced cells were maintained for up

to 10 passages for inductions, and transduction efficiencies typically ranged from 65-85%across cell lines. Cell lines that failed SNaP

induction (Figure S4B) tended to show transduction efficiencies below 30%.

Induction of SNaPs from human PSCs
Human PSCs were dissociated and plated at 75,000 cells/cm2 on Geltrex matrix in mTeSRmedia supplemented with Y-27632. After

12-24 hours, cells were fed with Induction Media (Day 1): DMEM/F12 (ThermoFisher, 11320082), Glutamax (1:100; ThermoFisher,

10565018), 20% Glucose (1.5% v/v), N2 Supplement (1:100, ThermoFisher, 17502048), Doxycycline (2 mg/mL; Sigma-Aldrich,

D9891), LDN-193189 (200 nM; Stemgent, 04-0074), SB431542 (10 mM; Tocris, 1614), and XAV939 (2 mM; Stemgent, 04-00046). After

24 hours in Induction Media, cells were fed with Selection Media (Day 2): DMEM/F12, Glutamax (1:100), 20%Glucose (1.5% v/v), N2

Supplement (1:100), Doxycycline (2 mg/mL), puromycin (5 mg/mL; ThermoFisher, A1113803), LDN-193189 (100 nM), SB431542

(5 mM), and XAV939 (1 mM). After 24 hours in Selection Media, SNaPs were dissociated with Accutase and replated at 120,000

cells/cm2 on Geltrex-coated plates in SNaP maintenance media supplemented with puromycin and Y-27632 (Day 3): DMEM/F12,

Glutamax (1:100), MEM-NEAA (1:100; Life Technologies, 10370088), B27 minus Vitamin A (1:50; Life Technologies, 12587010),

N2 Supplement (1:100; Life Technologies, 17502048), recombinant human EGF (10 ng/mL; R&D Systems, 236-EG-200), recombi-

nant human basic FGF (10 ng/mL; Life Technologies, 13256029), puromycin (5 mg/mL), and Y-27632 (10 mM). Starting 8-18 hours

after passaging, SNaPs were fed daily with SNaP maintenance media lacking Y-27632 and puromycin. SNaPs were passaged every

week in SNaP maintenance media with Y-27632, and then fed daily with SNaP maintenance media.

Immunostaining
SNaPs were washed with 1X PBS and then fixed with 4% paraformaldehyde for 15 minutes at room temperature before three more

washes with 1X PBS. Cells were permeabilized with 0.1% Triton for 15 minutes and then blocked with 10% normal donkey serum

diluted in 1X PBS for 1 hour at room temperature followed by an overnight 4�C incubation in primary antibody diluted in blocking

solution: Mouse anti-Nestin (1:1000; Stem Cell Technologies, 60091), Rabbit anti-PAX6 (1:500; BioLegend, 901302), Mouse anti-

OCT4 (1:1000; Stem Cell Technologies, 60093), Rabbit anti-SOX1 (1:1000; Stem Cell Technologies, 60095), Mouse anti-SOX2

(1:100; R&D Systems, MAB2018), Rabbit anti-ZO1 (1:200; Life Technologies, 617300), Rabbit anti-FOXG1 (1:400; Abcam, 18259),

and/or Rabbit anti-KI67 (1:500; ThermoFisher, MA5-14520). After 3 washes in 1X PBS at room temperature, cells were incubated

for 2-4 hours at room temperature in secondary antibody diluted in blocking solution: Donkey anti-mouse Alexa647 (1:1000; Life

Technologies, A-31571) and/or Donkey anti-rabbit Alexa555 (1:1000; Life Technologies A-31572). Cells were washed once with

1X PBS followed by a 5-minute incubation in 4’, 6-Diamidino-2-Phenylindole Dihydrochloride (DAPI, 1:5000; Life Technologies,

D1306). Finally, cells were washed twice more with 1X PBS prior to imaging. For each well of a 96-well plate, 4-8 fluorescent images

were captured using the Cytation 3 cell imaging multi-mode reader (BioTek Instruments; Winooski, VT). All images were then pro-

cessed using the CellProfiler imaging analysis software120 to quantify the percentage of NPC marker-positive cells.

Flow cytometry analysis of human pluripotent stem cells and SNaPs
Human pluripotent stem cells and SNaPswere stained with OCT3/4 antibody (BD Biosciences, 560794) following themanufacturer’s

instructions contained in the Human Pluripotent Stem Cell Transcription Factor Analysis Kit (BD Biosciences, 560589): hPSCs and

SNaPs were dissociated with Accutase and fixed using BD Cytofix at a concentration of 1x107 cells/mL for 20 minutes at room tem-

perature. Fixed cells were washed twice with 1X PBS and permeabilized using 1X BD Perm/Wash at a concentration of 1x107 cells/

mL for 10 minutes at room temperature. 1x106 fixed/permeabilized cells were stained with OCT3/4 antibody at a concentration of

1x107 cells/mL for 20 minutes at room temperature in the dark. Stained cells were washed twice with 1X BD Perm/Wash, resus-

pended in 1X PBS, and kept on ice in the dark until analysis. Cells were passed through a filter-top 12x75 mm polystyrene tube

just before analysis on a BD FACSAria II (BD Biosciences; San Jose, CA). Data was presented with OCT3/4 on the x-axis (PerCP-

Cy5.5) and the empty channel mCFP-A on the y-axis.

SNaP population RNA-seq
H9(a.k.a. WA09) hESCs and early passage H9-derived SNaPs were harvested in 350 mL of RTL Plus before RNA was extracted using

the RNeasy Plus Micro Kit (Qiagen, 74034). For each replicate, 50 ng of purified RNA was used for library construction. Smart-seq2

libraries were then prepared as follows: Total RNA was captured and purified on RNAClean XP beads (Beckman Coulter, A63987).
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Polyadenylated mRNA was then selected using an anchored oligo(dT) primer and converted to cDNA via reverse transcription. First

strand cDNA was subjected to limited PCR amplification followed by transposon-based fragmentation using the Nextera XT DNA

Library Preparation Kit (Illumina, FC-131-1024). Samples were then PCR amplified using barcoded primers such that each sample

carried a specific combination of Illumina P5 and P7 barcodes, and then pooled together prior to sequencing. Sequencing was

performed on an Illumina NextSeq500 using 2 x 25bp reads (Illumina; San Diego, CA).

Dual-SMAD neural progenitor cell induction (Protocol #1, Figure S2I)
When SW7388-1 hiPSCs reached 80-90% confluency (Day 0), neuroectodermal differentiation media A was added to induce NPCs:

DMEM/F12 (47% v/v), Neurobasal media (47% v/v; Life Technologies, 21103049), Glutamax (1:50), MEM-NEAA (1:100), B27 (1:50;

Life Technologies, 17504044), N2 Supplement (1:100), SB431542 (10 mM), LDN (100 nM), and XAV-939 (2 mM). Cells underwent

complete media exchanges daily. At Day 14, cells were harvested for RNA extraction and subsequent qPCR experiments.

Dual-SMAD neural progenitor cell induction (Protocol #2, Figure S2J)
When SW7388-1 hiPSCs reached 80-90% confluency (Day 0), neuroectodermal differentiation media A with retinoic acid (1 mM;

Sigma, R2625) in place of XAV-939. Cells underwent complete media exchanges daily. Starting on Day 7, cells were fed daily

with neuroectodermal differentiation media B: DMEM/F12 (47% v/v), Neurobasal media (47% v/v), Glutamax (1:50), MEM-NEAA

(1:100), B27 (1:50), N2 Supplement (1:100), and Retinoic acid (1 mM). At Day 21, cells were harvested for RNA extraction for subse-

quent qPCR experiments.

SNaP developmental qPCR
SW7388-1 human iPSCs, SNaPs, and dual-SMAD NPCs were harvested in 350 mL of RTL Plus (Qiagen, 1053393) per well of a

24-plate. RNAwas extracted from the samples using the RNeasy PlusMicro Kit (Qiagen, 74034). Purified RNAwas then used as input

for the iScript cDNA Synthesis reaction (Bio-Rad, 1708891) and the product was diluted 1:5 in nuclease-free water. For each sample,

1 mL of cDNA was added to iTaq Universal SYBR Green Supermix (Bio-Rad, 1725124) that contained 500 nM of forward and reverse

primers in a final volume of 20 mL per well of a 384-well plate. Primers were manufactured by Integrated DNA Technologies (NESTIN:

5’-CTG CTA CCC TTG AGA CAC CTG-3’ and 5’-GGG CTC TGA TCT CTG CAT CTA C-3’; PAX6: 5’-AAC GAT AAC ATA CCA AGC

GTG T-3’ and 5’-GGTCTGCCCGTTCAACATC-3’; SOX1: 5’-CCACATCCT AATCTTGAGCCA-3’ and 5’-CTGACGTCCACTCTC

AGT CT-3’;OCT4: 5’-CCA AGG AAT AGT CTG TAG AAG TGC-3’ and 5’-TGC ATG AGT CAG TGA ACA GG-3’; FOXG1: 5’-CGT CCA

CCA TAT AGT TCC ATG A-3’ and 5’-TGA CTG CTT TGC CAT TTC ATT C-3’; SOX2: 5’-CTT GAC CAC CGA ACC CAT-3’ and 5’-GTA

CAACTCCATGACCAGCTC-3’;GAPDH: 5’-TTG TCAAGC TCA TTT CCTGGT ATG-3’ and 5’-TCC TCT TGTGCTCTTGCTGG-3’).

qPCR reactions were run for 40 cycles on the CFX384 Touch Real-Time PCR Detection System (Bio-Rad; Hercules, CA). All samples

were run in triplicate, and results were normalized to a GAPDH control run in duplicate. DDCt values were calculated and plotted to

show relative expression.

NGN2 ChIP-seq
SW7388-1 hiPSCs were transfected with V5-tagged constructs: (1) TetO-NGN2-V5 + TetO-GFP or (2) TetO-NGN2 + TetO-GFP-V5.

Two technical replicates were included for each time point at Day 0 (stem cells), Day 1, and Day 2 (SNaPs) post-induction. Cells were

fixd in 1% paraformaldehyde for 10 minutes at 37�C, lysed, and sonicated (Branson sonicator) for 8 minutes on ice (40% amplitude,

0.7 seconds ON + 1.3 seconds off). Immunoprecipitation was carried out using Anti-V5-tag mAb (100 mg/100 mL; MBL #M167-3).

DNAwas recovered by reversing crosslinks and purified using AMPure XP beads (Beckman Coulter A63880). DNA libraries were pro-

duced with the Illumina TrueSeq library kit as per manufacturer’s instruction and sequencing was performed on an Illumina

NextSeq500. Bowtie2 was used to align reads to the GRCh38 reference genome.121 Peak calling was performed using MACS

with a bandwidth of 300 bp.122 The TetO-NGN2 + TetO-GFP-V5 samples were used as input background controls.

Clonal assay for self-renewal
SNaPs were plated as single cells in SNaP maintenance media plus Y-27632 on Geltrex-coated 96-well plates using a BD FACSAria

II. Cells were then fed daily with SNaPmaintenancemedia for two weeks. At this point, most wells were fixed and stained withMouse

anti-NESTIN (1:1000; StemCell Technologies, 60091) and Rabbit anti-PAX6 (1:500; StemCell Technologies, 60094) for quantification

of proliferation. The remaining wells were dissociated and re-plated as single cells in SNaP maintenance media plus Y-27632. Media

was changed the following day to spontaneous differentiation media (base media plus B27/N2) and fed 2-3 times a week for two

weeks. SNaPs were then fixed and processed for immunostaining as described above.

SNaP differentiation single-cell RNA sequencing
SNaPs were differentiated for 15 days in spontaneous differentiation media [DMEM/F12, Glutamax (1:50), MEM-NEAA (1:100), B27

(1:50), N2 Supplement (1:100)] and dissociated with a 15 minute/37�C Accutase treatment. Samples were filtered via 40 mm tip filters

(BelArt, H13680-0040) and centrifuged at 400xg for 5 minutes. Cells were resuspended to 1 million cells/mL and run through the 10X

Chromium V2 scRNA-seq pipeline per vendor’s instructions. Samples were sequenced on a HiSeq 4000 (Illumina) using 2 x 50-cycle

SBS kits (Illumina, FC-410-1001) and clustering was done on a HiSeq 4000 flow cell via cBot2 (Illumina). The library was then

sequenced with paired-end reagents, with 26xRead 1 cycles, 8xi7 index cycles, and 98xRead 2 cycles.
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SNaP differentiation immunostaining
SNaPs were plated on Geltrex at 10,000-15,000 cells/cm2 in spontaneous differentiation media or base media with 10% fetal bovine

serum (GE Healthcare, 16777-014) or Astrocyte Media (ScienCell, 1801) in the presence of Y-27632 (10 mM). The media was

exchanged the following day to remove Y-27632, and cells were then fed 2-3 times a week for 14 days (base and 10% FBS) or

20-60 days (Astrocyte media). Cells cultured in Astrocyte Media were passaged weekly and re-plated at 15,000 cells/cm2 without

Y-27632. To determine cell identity, SNaP-derived cells were immunostained and quantified as described above. The following pri-

mary antibodies were used for these experiments: Mouse anti-HuC/D (1:200; Life Technologies, A-21271), Rat anti-CD44 (1:400;

eBioScience, 17-0441-82), Mouse anti-S100b (1:1000; Sigma Aldrich, S2532), Rabbit anti-GFAP (1:100; Millipore, AB5804), Chicken

anti-MAP2 (1:500; Abcam, ab5392), Rabbit anti-Synapsin I (1:1000;Millipore, AB1543), Rabbit anti-BRN2 (1:300; Abcam, ab137469),

Rabbit anti-CUX2 (1:200; Abcam, ab130395), and/or Rat anti-CTIP2 (1:1000; Abcam, ab18465). Donkey anti-Mouse Alexa555

(1:1000; Life Technologies, A-31570), Donkey anti-Mouse Alexa647 (1:1000; Life Technologies, A-31571), Donkey anti-Rabbit

Alexa555 (1:1000; Life Technologies, A-31572), Goat anti-Rat Alexa555 (1:1000, Life Technologies, A-21434), and/or Goat anti-

Chicken Alexa647 (1:1000; Life Technologies, A-21449) were used as secondary antibodies.

Multi-electrode array (MEA)
SNaPs were plated on Geltrex at 15,000 cells/cm2 in base media supplemented with Y-27632. The media was exchanged the

following day to remove Y-27632. After 5-6 days in culture, the cells were fed with base media containing DAPT (5 mM; DNSK Inter-

national). Two days later, the partially differentiated SNaPs were then dissociated and re-plated at 15,000 cells/cm2 in DAPT-con-

taining base media. One week later, the post-mitotic cells were dissociated and co-cultured with primary mouse glia (23,000

glia + 13,000 neurons per well) on a Geltrex-coated 12-well MEA plate (Axion Biosystems, M768-GL1-30Pt200) in Neurobasal com-

plete media [Neurobasal media (97% v/v; Life Technologies 21103049), Glutamax (1:100), 20% Glucose (1.5% v/v), MEM-NEAA

(1:200), B27 (1:50), BDNF (10 ng/mL), CTNF (10 ng/mL), and GDNF (10 ng/mL)]. Cells were fed 2-3 times per week with partial ex-

changes to reach a final volume consisting of 80% fresh media and 20% conditioned media. Five minutes of neuronal activity was

measured weekly using the Maestro 12-well 64 electrodes per well micro-electrode array (MEA) plate system (Axion Biosystems,

Atlanta, GA). After approximately 50 days in co-culture, synaptic contents were assessed using pharmacological blockers of neuro-

transmitter receptors. More specifically, baseline activity was measured for 5 minutes prior to the addition of NBQX (10 mM), D-APV

(50 mM), or Picrotoxin (50 mM) directly to the conditioned media. After a brief 5-10 incubation, neuronal activity was again measured

for 5 minutes. Data was analyzed using the Axion Integrated Studio 2.4.2 and the Neural Metric Tool (Axion Biosystems).

SNaP village construction and experimental design
SNaP lines were generated from dozens of unique hESC donor lines and maintained as independent cultures (Table S1). At Passage

2-3, SNaP lines were dissociated with Accutase and counted using a Countess II FL (ThermoFisher Scientific). An equal number of

SNaPs from each cell line were then plated together in a 10 cm2 Geltrex-coated dish at 120,000 cells/cm2. For Dropulation exper-

iments, cells were harvested 2-3 days post-plating and run through the 10X Chromium Single Cell 3’ Reagents V2 system to isolate

individual cells into droplets per vendor’s instructions (10X Genomics; San Francisco, CA). Samples were then sequenced on a

NovaSeq 6000 system (Illumina) using a S2 flow cell at 2 x 100bp.

ZIKV propagation
Vero cells (ATCC, CCL-81) were plated on uncoated 10 cm2 dishes in Vero cell growth media (DMEM + 10% heat-inactivated fetal

bovine serum). At 80-90% confluency, cells were exposed to ZIKV-Ug (ATCC, VR-1838) or ZIKV-PR (ATCC, VR-1843) diluted in Hy-

Clone Earle’s 1X Balanced Salt Solution (EBSS; GE Healthcare Life Sciences, SH30029.02) at a low multiplicity of infection (<0.1;

based on ATCC manufacturer’s quantification of viral titer) in the minimal amount of media to cover the cells (3 ml). Cells were incu-

bated for 1 hour at 37�C/5%CO2 with gentle rocking every 15 minutes to prevent the cells from drying. After this infection period, the

inoculum was removed and replaced with 12 ml of Vero cell maintenance media (DMEM + 2% heat-inactivated fetal bovine serum)

pre-heated to 37�C. Two days after infection, the Vero cell conditionedmedia was collected and centrifuged for 10minutes at 2000xg

at room temperature to remove cell debris. The virus was aliquoted and stored at -80�C prior to quantification.

ZIKV quantification via focus forming assay
Vero cells were plated at 150,000 per well on uncoated 24-well plates in Vero cell growth media and incubated at 37�C/5%CO2. One

to two days post-plating, cells were rinsed with 1X PBS and then infected with 125 mL of virus diluted in 1X EBSS (10-4 to 10-7) for 1

hour at 37�C/5% CO2 with gentle rocking of the plate every 15 minutes. After the infection period, cells were rinsed with 1X PBS.

Then, 1 mL of pre-warmed overlay media [(2.1% carboxymethylcellulose sodium salt (CMC) in DMEM and 2% HI-FBS)] was slowly

added onto the monolayer of infected Vero cells. Thirty-six hours later, cells were rinsed several times with 1X PBS to remove the

CMC precipitates and then fixed in 4% paraformaldehyde for 15 minutes at room temperature. Post-fixation, cells were rinsed three

times with 1X PBS and then permeabilized with 0.1% Triton in 1X PBS for 10 minutes. Cells were blocked with 10% normal donkey

serum for 30minutes at room temperature followed by a 1 hour/37�C incubation in 150 mL of 1:1000Mousemonoclonal D1-4G2 anti-

flavivirus envelope protein (EMD Millipore, MAB10216) antibody diluted in blocking solution. After two washes in 1X PBS at room

temperature, cells were incubated for 1 hour/37�C in 1:1000 Goat anti-Mouse HRP-conjugated secondary antibody (Abcam,

ab6789) in blocking solution. Cells were once again washed twice with 1X PBS at room temperature followed by the addition of
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peroxidase substrate (Vector Laboratories, SK-4600) in 1X PBS. The number of foci were counted and then multiplied by the dilution

factor to quantify the viral titer. Dilutions were run in quadruplicate and ZIKV-Ug and ZIKV-PRwere quantified at the same time. ZIKV-

Ug and ZIKV-PR were quantified as 5.5 x 107 and 4.0 x 107 focus forming units (FFU) per mL, respectively.

ZIKV infectivity assay
SNaPs were infected for 1 hour at 37�C/5%CO2 with ZIKV-Ug or ZIKV-PR diluted in 1X EBSS at a MOI of 10, 1, 0.1, or 0.01. Vero cell

conditioned media from uninfected cells was diluted in 1x EBSS and used for the mock controls. Mock and ZIKV-infected cells were

fixed 54 hours post-infection (hpi) with 4% paraformaldehyde for 15 minutes at room temperature and then washed with 1X PBS.

Cells were permeabilized with 0.1% Triton for 15 minutes and then blocked with 10% normal donkey serum diluted in 1X PBS for

1 hour at room temperature followed by an overnight 4�C incubation in primary antibody: Mouse monoclonal D1-4G2 anti-flavivirus

envelope protein (1:500; EMDMillipore, MAB10216) and Rabbit anti-PAX6 (1:500; StemCell Technologies, 60094) antibody diluted in

blocking solution. After 3 washes in 1X PBS at room temperature, cells were incubated for 2-4 hours at room temperature in second-

ary antibody: Donkey anti-Mouse Alexa647 (1:1000) andDonkey anti-Rabbit Alexa555 (1:1000). Cells were washed oncewith 1X PBS

followed by a 5-minute incubation in DAPI (1:5000). For Vero cell infections, an additional 20-minute room temperature incubation

with F-Actin CytoPainter Phalloidin-iFluor 555 Reagent (1:10000; Abcam, ab176756) was included. Finally, cells were washed twice

more with 1X PBS prior to imaging. For each well of a 96-well plate, 4-8 fluorescent images were taken using the Cytation 3 cell im-

aging multi-mode reader. All images were then processed using the CellProfiler imaging analysis software to quantify the percentage

of 4G2-positive PAX6 stained cells.

Cell viability assay
At 96-120 hpi, cell viability was quantified using the CellTiter Glo 2.0 kit (Promega, G9242). Culture media was removed, and cells

were washed once in 100 mL 1X PBS. The 1X PBS was removed and replaced with 100 mL CellTiter Glo reagent. Plates were rocked

gently for 2 minutes to facilitate cell lysis. After a 10-minute incubation at room temperature, luminescence was measured using the

Cytation 3 cell imaging multi-mode reader. Data is presented as luminescence as a percentage of mock-infected controls.

qPCR quantification of ZIKV
SNaPs were infected with ZIKV-Ug or ZIKV-PR at a MOI of 10 or with mock media for 1 hour at 37�C. At 24 hpi and 72 hpi, 170 mL of

conditioned media was removed from each well of a 96-well plate. 140 mL of this supernatant was flash frozen in dry ice and stored at

-80�C for subsequent RNA extraction experiments, while 30 mL of the media was added directly to Vero cells for a 1-hour infection at

37�C. Vero cell infectivity was measured at 24 hpi using the infectivity assay. Viral RNA was prepared from the conditioned media

using the QIAamp Viral RNA Mini Kit (Qiagen, 52906). cDNA was prepared from 10 mL of viral RNA per sample using the iScript

Reverse Transcription Supermix (Bio-Rad, 1708841). At the same time, cDNA from 6 x 1:10 dilutions of the stock viral RNA of known

focus-forming units per mL (FFU/mL) was prepared. qRT-PCR was conducted using the CFX96 Touch Real-Time PCR Detection

System (Bio-Rad). For each sample, 1 mL of the cDNA or quantified stock cDNAwas added to 5 mL iTaqUniversal SYBRGreen Super-

mix (Bio-Rad, 1725124), 400 nM primers (Integrated DNA Technologies; Coralville, IA) designed for ZIKV-Ug or ZIKV-PR (ZIKV-Ug

primers: TGG GA G GTT TGA AGA GGT TG and TCT CAA CAT GGC AGC AAG ATC T; ZIKV-PR primers: GGG ACA GTC ACA

GTG GAGGT and GGT GGA TCA AGT TCC AGC AT), and enough nuclease-free dH2O for a final reaction volume of 20 mL. Standard

curves were established for each strain using the quantified stock dilutions and were used to assign FFU/mL values to tested sam-

ples. Due to the high concentration of virus in the supernatant samples, cDNA samples required a 1:100 dilution to fit within the

acceptable CT range.

Human antiviral response
Mock and ZIKV-infected SNaPs (MOI = 10 for ZIKV-Ug; MOI = 20 for ZIKV-PR) were harvested at 60 hpi using 350 mL of RLT Plus

reagent. Total RNA was then extracted using the RNeasy Plus Micro kit (Qiagen, 74034). The RT2 First Strand kit (Qiagen, 330404)

was used to prepare cDNA using 400 ng for each sample. The cDNA from each sample was then diluted in 91 ml of nuclease-free H2O.

Then, 102 mL of cDNA was added to 1,248 mL of nuclease-free H2O and 1,350 mL of 2X RT2 SYBR Green qPCR master mix (Qiagen,

330503). The master mix (10 mL) was then added into each well of a 384-well RT2 Profiler PCR Array Human Antiviral Response plate

(Qiagen, PAHS-122ZE-4) that contained primers for 84 genes related to the human antiviral response and five housekeeping genes

that were used as internal controls (ACTB, B2M, GAPDH, HPRT1, and RPL13A). The data was analyzed using the online portal pro-

vided by the kit (www.SABiosciences.com/pcrarrayprotocolfiles.php).

Genome-wide CRISPR-Cas9 ZIKV survival screens
All gRNA and lentiviral reagents for the primary and validation screens were generated at Broad Institute Genetic Perturbation Plat-

form. SW7388-1 SNaPs were transduced with the Brunello barcoded sgRNA library (CP0043 Brunello library containing 77,441 bar-

coded sgRNAs targeting 19,114 genes and 1,000 not-targeting guides) delivered through the all-in-one LentiCRISPRv2.0 system

(pXPR_BRD023 vector).123,124 One hundred million SNaPs per replicate (3 total replicates) were transduced using the spinoculation

method, in which cells were cultured in suspensionwith LentiCRISPRv2.0 (estimatedMOI = 0.4) and centrifuged at room temperature

for 2 hours at 1,000 rpm before being plated at 120,000 cells/cm2 on Geltrex coated plates. Transduced SNaPs were then expanded

and selected with puromycin (1 mg/mL) for one week, at which point they were passaged onto 15 cm2 Geltrex-coated dishes at
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120,000 cells/cm2 (40 million cells were plated per replicate to maintain the 500 cells per sgRNA representation). Two days post-

plating (one day post-Y27632 removal), SNaPs were either: (1) harvested using Accutase followed by PBS washes (‘‘Pre-

infection/Day 0’’ samples), (2) infected with mock media (for ‘‘Mock’’ samples), (3) infected with ZIKV-Ug (MOI = 1), or (4) infected

with ZIKV-PR (MOI = 5) in minimal media for 1 hour at 37�C/5% CO2 with gentle rocking every 15 minutes to prevent the cells

from drying. Cells were then fed every other day starting at 48 hpi by removing all media, washing once with 1X PBS to remove

dead cells and debris, and then adding back a 50:50 fresh SNaPmaintenancemedia/conditioned mediamixture. On Day 10, all sam-

ples (‘‘Mock/Day 10’’, ‘‘ZIKV-Ug’’, and ‘‘ZIKV-PR’’) were harvested and frozen at -80�C. DNA was then extracted using the QIAmp

DNABloodMaxi kit (Qiagen, 51192). PCR and sequencing were performed as previously described.123,125 Samples were sequenced

on a HiSeq2000 (Illumina).

H1 constitutive Cas9 stem cell line
A targeting vector with AAVS1 homology arms and a Flag-Cas9-2A-Blast-BGHpA expression cassette was generated and co-elec-

troporated with AAVS1 TALENS (System Biosciences) into H1 hESCs using the Neon Transfection System (Thermo Fisher Scientific;

Waltham, MA). Two days post-electroporation, Blasticidin (4ug/mL; Thermo Fisher Scientific, R21001) was added and emerging

clones were picked and analyzed by immunocytochemistry for FLAG-Cas9 using Mouse anti-FLAG antibody (1:300; Sigma Aldrich,

F1804) and by PCR for proper integration into the locus across the junctions (5’ junction: AAVS1-F2 AACTCTGCCCTCTAACGCTG

and CAG-R2 CTATGAACTAATGACCCCGTAATTG; 3’ junction: BGH-F1 GGAAGACAATAGCAGGCATGC and AAVS1-R4 CCAC

GTAACCTGAGAAGGGAAT; Non-targeted allele: AAVS1-F3 CCTGGCCATTGTCACTTTGC and AAVS1-R4 CCACGTAACCTGAG

AAGGGAAT). The H1-36-23 clone was differentiated into neurons using a dual SMAD inhibition protocol and plated into 96-well

plates. sgRNAs were delivered by lentiviral vectors that confer puromycin resistance, and the neurons were selected with puromycin

(2 mg/mL) for 2 weeks. Neurons were lysed and next-generation sequencing of the gRNA-targeted sites was performed in order to

identify and quantify indels generated.

Validation of CRISPR-Cas9 ZIKV survival screen
SNaPs were induced from H1-36-23 constitutive Cas9 stem cells before lentiviral transduction via spinoculation with individual

sgRNAs (pXPR_003 and pXPR_050 vectors) in a 24-well plate format. Cells were then expanded and selected with puromycin

(1 mg/mL) for one week. Cas9 gRNA-expressing SNaPs were passaged and plated onto Geltrex at 40,000 cells per well of a

96-well plate (120,000 cells/cm2). Two days later, SNaPswere infectedwith ZIKV-Ug (MOI = 1) before conducting the infectivity assay

at 54 hpi and the cell viability assay at 120 hpi. Infectivity and cell viability values were compared to Cas9-SNaPs that were trans-

duced with non-targeting gRNAs.

Census-seq
Village-44 SNaPs were exposed to mock media or ZIKV-Ug (MOI = 1) for 1 hour at 37�C. After 54 hours, cells were harvested and

fixed for 20 minutes at room temperature in BD Cytofix (BD Biosicences, 554714) at a concentration of 1x107 cells/mL. Fixed

cells were washed twice with 1X PBS and permeabilized using 1X BD Perm/Wash (BD Biosicences, 554723) at a concentration of

1x107 cells/mL for 10 minutes at room temperature. Cells were then stained with Ms anti-4G2 antibody (1:100) in perm/wash buffer

for 1 hr at room temperature in the dark. Stained cells were washed twice with 1X BD Perm/Wash, resuspended in 1X PBS, and kept

at 4�C in the dark until analysis. Finally, stained cells were passed through a filter-top 12x75mmpolystyrene tube just before analysis

on a BD FACSAria (BD Biosciences; San Jose, CA). Samples were separated based on GFP signal intensity into four bins: ZIKV-

Negative (�60% of total cells), ZIKV-Low (�13.3%), ZIKV-Mid (�13.3%), and ZIKV-High (�13.3%).

DNAwas unfixed and extracted from each sample using a column-free procedure: First, FAC sorted samples were spun down and

resuspended in 300 mL Cell Lysis Solution (Qiagen, 158906) with 2 mL Proteinase K (New England Biolabs, P8107S) and incubated at

56�C overnight. The next day, 1.5 mL of RNase A (Qiagen 158922) was added to each sample prior to a 30-minute incubation at 37�C.
Samples were placed on ice for 5 minutes and spun briefly before 200 mL of Protein Precipitation Solution (Qiagen 158910) was

added. Samples were vortexed for 20 seconds and then spun down at 13,200 RPM for 10 minutes at 4�C. The supernatant was

then transferred to a chilled tube containing 300 mL ice-cold 100% isopropanol with 0.5 mL Glycogen Solution (Qiagen 158930). Sam-

ples were again spun down at 13,200 RPM for 10 minutes at 4�C before discarding the supernatant. The DNA pellet was washed in

300 mL of 70% Ethanol and centrifuged at 14,000 RPM for 5 minutes at 4�C. The supernatant was discarded, and the DNA pellet was

dried at room temperature for 10 minutes so that all of the ethanol was evaporated. Finally, the pellet was re-hydrated at 15-20 mL

dH2O and then incubated for 1 hour at 55�C.
Extracted DNA from FAC-sorted bins were processed for low-coverage DNA sequencing, which was performed using either the

TruSeq NanoDNA Library Prep for NeoPrep (Illumina Catalog# NP-101-9001DOC) or Nextera DNA Library Prep (Illumina FC-121-

1030) setup (Note: any standard kit that generates sequence libraries from DNA can be compatible with the pipeline). Libraries were

then sequenced on an Illumina Nextseq500 instrument using a 75-cycle high output kit. The run was setup as a single 85 bp read

and an index read when more than one library was pooled. We regularly pool up to 16 Census-Seq samples in one sequencing run.

Validation of primary CRISPR-Cas9 fitness screen
To validate the genetic drivers of SNaP proliferation identified in the SNaP fitness screen, SW7388-1 SNaPs were transduced

with Cas9-lentivirus (pLX-311-Cas9 vector) via spinoculation in 24-well plates followed by expansion and selection with blasticidin
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(10 mg/mL) for one week. SNaPs were then transduced with individual lentivirus gRNAs (pXPR_003 and pXPR_050 vectors) in the

24-well plate format, before expansion and selection with puromycin (1 mg/mL) for one week. Cas9 gRNA-expressing SNaPs

were passaged and plated onto Geltrex at 1,000 cells per well of a 96-well plate (3,333 cells/cm2). The following day (Day 1),

Hoechst-33342 dye (1:2000 in basemedia) was added to 1/2 of the wells before Cytation 3 cell imagingmulti-mode reader (4X objec-

tive; 3 x 3 grid). The dye and imaging process was repeated 9 days later (Day 10) for the remaining wells. All images were then

processed using the CellProfiler imaging analysis software to quantify the number of Hoechst-positive cells. Data is presented as

calculated doubling rate for each gRNA line using the following equation:

Doubling time = Duration

�
log 2

�
cell count at Day 10

cell count at Day 1

�

where Duration refers to time between measurements in hours (216 hours). For all experiments, the average number of cells for a

given sgRNA was used as the denominator in the log2 calculation (i.e. cell count at Day 1). Doubling rates were compared to

Cas9-SNaPs that were transduced with non-targeting gRNAs.

Cerebral organoid formation
Stem cell-derived cerebral organoids were generated as previously described97: H1-Cas9 hESCs were dissociated in Accutase and

plated at 18,000 cells/well of an Ultra-Low Attachment 96-well Round Bottom plate (Corning, 7007) in 150 mL of mTesRmaintenance

media supplemented with Y-27632 (50 mM). Two days later (Day 2), 75 mL of conditioned media was removed from each well and

replaced with 150 mL of fresh mTeSR maintenance media supplemented with Y-27632 (50 mM). The following day (Day 3), 125 mL

of conditioned media was removed from each well using the ‘‘blast’’ technique and replaced with 150 mL of fresh mTeSR mainte-

nance media without Y-27632. From Day 4 onward, 150 mL of conditioned media was removed every other day from each well using

the ‘‘blast’’ technique and replaced with 150 mL of fresh Neural Induction media (DMEM/F12 with Glutamax, N2 supplement (1:100),

MEM-NEAA (1:100), Heparin (1 mg/ml). Cerebral organoid size was measured using the Cytation 3 cell imaging multi-mode reader

using the 4X bright field objective. All images were then processed using the CellProfiler imaging analysis software to stitch the im-

ages and quantify the two-dimensional area of each organoid.

Cerebral organoid immunohistochemistry
At Day 28 post-plating, cerebral organoids were washed twice in 1X PBS and then fixed in cold 4% PFA for 30 minutes shaking at

4�C. Organoids were thenwashed three times in 1X PBS and incubated in 1ml of 30% sucrose in a 1.5ml Eppendorf tube for 1 hour at

4�C (or until the organoids settled to the bottom of the tube). Organoids were then transferred to custom-made molds composed of

2-ply aluminum foil, which were then filled with 900uL of a mix of OCT/30% sucrose. Themolds were placed in a slurry of ethanol and

dry ice for 5 minutes to freeze before storage at -80C. Frozen organoids were sectioned in 20 mM slices using a ThermoSci HM550

cryostat and placed onto glass slides.

Organoid sections were then fixed for 5 minutes at room temperature with 4% PFA before a 3X wash in 1X PBS. Sections were

blocked and permeabilized (50 mL 10% Donkey Serum in 1X PBS + 0.38g glycine + 150 mL Triton X-100) for 1 hour at room temper-

ature in a humified chamber. Organoidswere stainedwith the following primary antibodies overnight at 4�Cdiluted in 1X PBSwith 1%

Donkey Serum: Mouse anti-SOX2 (1:100; R&D Systems, MAB2018), Rabbit anti-TBR1 (1:200; Cell Signaling Technology 49661S),

Rabbit anti-MKI67 (1:500; ThermoFisher, MA5-14520). Sections were washed three times for 5 minutes each with 1X PBS +

0.05% Triton X-100 followed by incubation for 2-3 hours at room temperature in 1% Donkey Serum + 1:1000 DAPI + the following

secondary antibodies: Donkey anti-mouse Alexa488 (1:1000; Life Technologies A-21202) and Donkey anti-rabbit Alexa555 (1:1000;

Life Technologies A-31572). Sections were washed 3x5 minutes in 1X PBS + 0.05% Triton X-100 followed by two more washes in 1X

PBS. Coverslips were placed onto each section, mounted with 50-100 uL Fluoromount, and sealed with clear nail polish. Images

were captured using a Zeiss LSM 880 confocal microscope and were analyzed using CellProfiler software.

QUANTIFICATION AND STATISTICAL ANALYSIS

Dropulation sequence alignment and donor assignment
The human iPSC village, SNaP Village-21, SNaP Village-37, and SNaP Village-44 raw scRNA-seq data were subjected to the Dro-

pulation pipeline to re-identify the donor of origin for each sequenced cell. Sequence data was demultiplexed and aligned following

the standard Drop-Seq protocol126 and was aligned to the GRCh38 reference and ensembl v89 gene models. Sequencing reads

were then filtered to reads that mapped at high quality (MQ>=10) to the human genome. Genotypes in VCF files were called against

the GRCh38 reference genome.

For Dropulation to perform accurately, input sequencing and VCF data is filtered on a per-run basis. Sequence reads are filtered to

high quality mappings (MQ>=10) on the autosomes that have not been flagged as PCR duplicates. VCF sites are considered if they

meet all of the following criteria: each site passedGATK’s Variant Quality Score Calibration (VQSR) filter, had amean genotype quality

(GQ) score R 20, a mean variant read depth (DP) R 10, a call rate > 50%, a Hardy Weinberg Equilibrium p-value > 1e-3. Variants

located in low complexity regions of the genome or in common segmental duplications as annotated by the UCSC genome browser

were filtered from the VCF. Individual genotypes with gross allelic imbalances were set to missing and excluded as defined by the

following criteria: an allele balance R 0.25 for heterozygous sites and R 0.9 for homozygous reference and homozygous alternate
e9 Cell Stem Cell 30, 1–21.e1–e13, March 2, 2023
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sites. Samples with a call rate <90% and a mean depth < 10 were removed from the VCF. Additionally, the Dropulation algorithm

retains sites that: a) have a GQ score of at least 30 b) are diploid and polymorphic in the subset of donors in the population c) at least

50% of donors have a GQ score R 30. Furthermore, variants on the X, Y, and MT contigs were ignored. For genotype array-based

data where site quality scores may not be available, sites where the reference base is ambiguous [A/T, C/G] were not considered.

The Dropulation algorithm analyzes each cell in the data set independently and generates a likelihood of the data having been

generated by each of the donors in the VCF (or a subset of them as requested.) At each variant site, the probability of observing

the allele at each unique molecular identifier (UMI) for the site is calculated as the probability of the base at that site for the mode

observed base, and 1 - probability for reads that disagree with the mode UMI base. This downweighs transcripts where the under-

lying reads disagree on the observed allele. The likelihood of donor is then computed as the diploid likelihood at each UMI, summed

across all sites. The diploid genotype is the average of the two haploid genotypes. For homozygous genotypes, this is the same as the

haploid genotype, where if the observed base matches the genotype of the donor, the likelihood is 1- error rate of the UMI. For het-

erozygous sites, the likelihood is 0.5, regardless of base quality. The probability of the donor is then calculated as the probability of the

donor divided by the sum of all donor probabilities.

Dropulation missing data handling
As the number of donors in a VCF file increases, the likelihood that at least one donor will not be called at high quality at any genotyp-

ing site increases. One way to deal with missing data is to ignore sites with any missing data, but this can exclude a large number of

sites. Instead, we filter sites where the majority of donors are missing data, then for other sites missing data we use the remaining

members of the population to calculate a per-site likelihood penalty score to use for all donors that have no genotype data. This score

is an extension of the donor assignment score, where the likelihood of each genotype class is calculated, then combined as a

weighted average score. This replaces the diploid genotype score for each UMI observed. The mixture coefficient is the proportion

of the population that has each genotype class in the population, and sums to one.

The diploid likelihood for a single variant site:

PrfDjGg =
Y
j

Pr
�
Dj

��H1

�
+Pr

�
Dj

��H2

�
2

The haploid likelihood

Pr
�
Dj

��H� = 1 � ej if Dj = H else ej

The missing data penalty for a single UMI

PS =
X

i˛ fAA;AB;BBg
PrfDjGig 3 MðGiÞ

D=The list of UMI bases at the site

G=The genotype of the donor at that site.

H1,H2=The haploid genotype

ej= The error rate of the observed UMI at base Dj.

PS=The penalty score for missing data at a site

M = mixture coefficient ½proportion of genotype in population�

Dropulation doublet detection
Doublet Detection uses the same read and variant filtering as the donor assignment algorithm, with the exception of missing data,

where only sites with at least 90% complete data are accepted. The Doublet detection algorithm analyzes each cell in the data set

independently and generates a likelihood of the data having been generated by each possible pair of donors. To limit the number of

possible tests, doublet detection is more restricted than donor assignment. The first donor of the pair is fixed as the most likely donor

based on the single donor assignment, and the second donor of the pair is limited to a set of donors expected in the experiment. This

limits the number of combinations to [number of donors -1] tests per cell.

For each donor pair, we optimize the mixture component of donor 1 to donor 2 to maximize the likelihood of that donor pair. The

mixture score is the fraction of the data that arises from the first donor of the pair and is bounded to [0.8-0.2]. If the mixture score is

unbounded, sequencing errors, ambient RNA, and genotyping errors will almost always generatemixtures of two donors that are very

close to one, with a higher likelihood than the single donor likelihood, resulting in most cells being classified as doublets.

To select the donor pair that best explains the data, we first calculate the maximum likelihood each donor pair by selecting

themaximum likelihood of the optimal mixture, the likelihood of the pair with amixture of 1 (all data arises from donor 1) and the likeli-

hood of the pair with a mixture of 0 (all data arises from donor 2). The donor pair with maximum likelihood is then selected as the

best pair.
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To classify the pair as a singlet or doublet, we calculate the probability of the data being a doublet as the doublet likelihood divided

by the sum of the doublet likelihood andmixture=1,0 likelihoods.We classify cells as doublets if their probability is greater >= 0.9. The

vast majority of doublet probabilities are bimodally distributed at approximately 1 and 0.

Doublet Likelihood

PrfDjS1;S2g = PrfDjG1g �M+PrfDjG2g � ð1 � MÞ
S1,S2= Donor 1, Donor 2

G1,G2=Genotype Donor 1, Genotype Donor 2

M = Fraction of data arising from donor 1

Dropulation assignable single donors
To perform downstream analysis at a donor level, the set of cell barcodes in the experiment need to be filtered to the subset where

cells are assigned to a single donor confidently. Cell barcodes are assigned to donors via single donor assignment. Doublet detection

is then run, and all cells that are likely doublets (p-value > 0.9) are filtered from the data set. Cell barcodes are filtered if the single

donor assignment p-value > 0.05. Given the remaining cells, the relative proportions of each donor are validated to determine if there

are significant numbers of cells assigned to donors in the genotype backbone, but not expected in the experiment. Donors with very

few assigned cells (less than 0.2%) are removed from the experiment.

The Dropulation software was able to analyze the 104-donro hiPSC village dataset (25,080 cells sequenced to 1,755 average UMIs

with 459M total reads) and assign cells to 142 possible donors in 1.72 hours using 512,235 SNPs, and detect doublets in an additional

1.4 hours, using 8g of memory on a single core processor.

Single cell expression analysis of iPSC village
The digital gene expression matrices were normalized, and variable gene selection was performed.127 Clusters were identified using

independent component analysis (ICA) based dimension reduction and Louvain community detection algorithms.128

Differential gene expression and Geneset enrichment
To detect sex-biased or cell source dependent gene expression, we summed the UMI counts of all assignable single cells per donor

to generate a donor by genematrix. Differential expression was run using voom-limma109 while adjusting for covariates including age

and cell source where applicable and additional surrogate variables determined by smartSVA.110 Gene set enrichment was per-

formed using the C2 (literature curated) and C5 (Gene Ontology Annotations) available in the Molecular Signatures Database

(MSigDB) and CAMERA111 on the list of genes ranked by the voom t-statistics.

Differentiation scRNA-seq
The 10XCell Ranger 1.3.1 pipeline was utilized to convert rawBCL files to cell-genematrices. The Illumina bcl2fastq script conducted

the initial demultiplexing. FASTQ files were then aligned, UMI-filtered, and barcodes were matched via the CellRanger count script.

The GRCh37.75 human reference genome was used for alignment. After filtering out barcodes with very few matching transcripts, a

total of 2,167 SNaP-derived cells were adequately sequenced. An average of 144,318 reads were mapped per neurosphere cell and

207,402 reads were mapped per SNaP-derived monolayer cell. Resulting scRNA-seq datasets were analyzed in R using Seurat2.

Cell-gene matrices were log normalized, and cells with >10%mitochondrial reads of >7000 unique genes were filtered out to reduce

the number of dead or doublet cells within the dataset. Variable genes were identified and used to determine the top 15 principal

components, which were used for the subsequent analysis. Graph-based clustering was used to approximate different cell groups,

and t-stochastic neighborhood embedding (TSNE) analysis used for 2-dimensional representation. Differential expression between

clusters was determined by the Wilcoxon rank sum test. Cells were compared to in vivo cell types as described below.

SNaP cell type classification
scRNA-seq based comparisons between the in vitro SNaPs and in vivo human brain cells were conducted using the Seurat 3.0 R

package.36 First, a custom script was composed based on the ‘‘Multiple Dataset Integration and Label Transfer: Reference-based’’

vignette (http://sajitalab.org/seurat/v3.1 /integration.html; accessed July 15, 2019). Then, gene expression matrices from SNaPs

were merged with two reference datasets: 257 cells from 16-18 week post-conception (wpc) fetal and 21- to 63-year-old adult brain

tissue34 and 3396 cells from 5.85 wpc to 37 wpc fetal brain tissue.35 Similar to a recent report,129 we condensed the large number of

cell types identified in these reference datasets into 8 groups: Fetal Astrocyte (Nowakowski: ‘‘Astrocyte’’), Fetal Excitatory Neuron

(Nowakowski: ‘‘EN-PFC-1’’, ‘‘EN-PFC-2’’, ‘‘EN-PFC-3’’, ‘‘EN-V1-1’’, ‘‘EN-V1-2’’, EN-V1-3’’, ‘‘nEN-early-1’’, ‘‘nEN-early-2’’, ‘‘nEN-

late’’), Fetal Inhibitory Neuron (Nowakowski: ‘‘nIN-1’’, ‘‘nIN-2’’, ‘‘nIN-3’’, ‘‘nIN-4’’, ‘‘nIN-5’’, ‘‘IN-CTX-CGE-1’’, ‘‘IN-CTX-CGE-2’’,

‘‘IN-CTX-MGE-1’’, ‘‘IN-CTX-MGE-2’’), Intermediate Progenitor Cell (Nowakowski: ‘‘IPC-div1’’, ‘‘IPC-div2’’, ‘‘MGE-IPC-1’’, ‘‘MGE-

IPC-2’’, ‘‘MGE-IPC-3’’, ‘‘IPC-nEN-1’’, ‘‘IPC-nEN-2’’, ‘‘IPC-nEN-3’’), Neural Progenitor Cells (Darmanis: ‘‘fetal replicating’’; Nowakow-

ski: ‘‘RG-div1’’, ‘‘RG-div2’’, ‘‘RG-early’’, ‘‘vRG’’, ‘‘tRG’’, ‘‘oRG’’, ‘‘MGE-RG-1’’, ‘‘MGE-RG-2’’, ‘‘MGE-div’’), Oligodendrocytes

(Darmanis: ‘‘oligodendrocytes’’), Postnatal Astrocyte (Darmanis: ‘‘astrocytes’’), and Postnatal Neuron (Darmanis: ‘‘neurons’’).
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After inputting themerged gene expressionmatrices with the condensed cell identifier metadata, themerged dataset was split into

a list with each dataset as an element using the CreateSeuratObject function (min.cells = 3). Log-normalization was then performed,

and variable features were identified using the NormalizeData and FindVariableFeatures (selection.method = ‘‘vst’’; nfeatures = 2000)

functions, respectively. Anchors between the individual datasets were calculated using the FindIntegrationAnchors (dims = 1:30). The

IntegrateData function (dims = 1:30) was deployed to create a batch-corrected expression matrix for all reference cells. This inte-

grated expression matrix was then used as the reference to which the SNaP expression matrices (‘‘query’’) were compared using

the FindTransferAnchors, TransferData, and AddMetaData functions (dims = 1:30). The output included cell predictions and predic-

tion scores for each SNaP cell.

For Figures 3G–3I, this analysis was repeated using only the human fetal NPC class of cells in the Nowakowski dataset (outer radial

glia, ventricular radial glia, truncated radial glia, dividing radial glia-1, dividing radial glia-2, and neuroepithelial radial glia) plus the

adult cells from the Darmanis dataset as the reference.

eQTL discovery
For the set of assignable single donor cells, the UMI counts across cells of the same donor and gene are summed to a single mea-

surement to generate a donor by gene expressionmatrix. Genes on the Y andMT chromosomes are filtered out, as are gene symbols

that have ambiguous genomic mappings. Gene expression is then normalized to be fractional by dividing the gene expression of

each gene/donor to the sum of expression for all genes. This fractional representation is then multiplied by a fixed constant of

100,000. Finally, genes are filtered to the top 50% highest expressed genes for eQTL discovery.

Variants are included for analysis if they pass all of the following filters. At least 90%of donorsmust have a genotype that was called

and has a genotype quality >=30. The minor allele frequency of the variant must be between 5% and 95% in the population. The

variant Hardy-Weinberg equilibrium (HWE) p-value must be > 1e-4. Finally, the variant must be within 10kb of the start or end of

the gene for which it is tested. Variant genotypes are encoded by the number of alternate alleles.

The matrix of normalized expression data and genotype matrix per donor is then encoded in the format required by the R package

MatrixEQTL.37 The expression data was then corrected for latent batch effects using PEER.112 MatrixEQTL was then used on the

corrected expression data to generate empiric p-values for all variant/gene interactions. False discovery rate (FDR) is then controlled

hierarchically at two levels. At the gene level, the SNP with the best p-value is selected as the index SNP, and FDR is controlled by

using the R package eigenMT,113 which uses the linkage disequilibrium of SNPs to determine the number of independent tests within

a gene. The distribution of index SNP p-values is then transformed into q-values via the R package qvalue.We consider all genes with

a q-value < 0.05 to be eGenes.

eQTLswere compared to public GWASdatasets to identify overlapping loci using the SNPnexus online portal.114 GWASplotswere

generated using Enigma-Vis115 (Figure 4E) or LocusZoom116 (Figure 4F).

Genome-wide CRISPR-Cas9 screens
Gene-level analysis was executed using RSA115 and BAGEL.117 For RSA analysis, DESeq2118 was used to generate log2 fold change

from gRNA read counts. Subsequently, z scores were computed in R Studio and RSA scores were generated. For additional signif-

icance thresholding, Benjamini Hotchberg correction was performed on RSA values which were plotted against Quantile 3 (Q3) and

Quantile 1 (Q1) values. BAGEL computations were performed using CRISPRAnalyzer119 with read counts as the input and the pre-set

‘‘Brunello’’ library. For this analysis, gRNAs with fewer than 20 reads were eliminated from the analysis pipeline. For ZIKV survival

screens, Day 10 infected samples were compared to Day 10 mock samples. For fitness screens, Day 10 mock samples were

compared to Day 0 mock samples.

Census-seq
The Census-seq analytical pipeline was executed19: DNA sequencing output was run through an alignment protocol using the Picard

tools ExtractIlluminaBarcodes and IlluminaBasecallsToSam. The de-multiplexed libraries were then aligned to a human reference

genomewith BWA. Prior to running the Census-seq algorithm, VCF files were processed to filter variants and add additional site-level

information. Variants were first normalized to their appropriate reference sequence using BCFTools. Variants that weremonomorphic

were dropped, as well as those without a PASS filter, where the site was flagged as problematic during VCF generation. Sites

without rsID annotations were updated using information from dbSNP when possible, and otherwise site names were changed to

chromosome:position:ref_allele:alt_allele.

Input sequencing and VCF data was then filtered on a per-run basis. Sequence reads were filtered to high quality mappings

(MQ>=10) on the autosomes that were not flagged as PCR duplicates. VCF sites were considered if they met all of the following

criteria: each site has GQ score of at least 30, is a diploid site, is polymorphic in the subset of donors in the population, and at least

90% of donors have a genotype quality score >=30. In addition, for genotype array-based data where site quality scores may not be

available, sites where the reference base is ambiguous [A/T, C/G] were not considered. Only variant sites with �5% allele frequency

were included in analysis. Amatrix of donor genotypes and the counts of the reference and alternate allele at each variant were gener-

ated. The algorithm initializes with the donor proportions set to equal values (1/number of donors), then runs through an estimation

maximization (EM) procedure. The allele frequency of each site is calculated from the genotypes of the donors and their relative pro-

portion in the pool. The initial likelihood of the sequencing data given the starting donor ratios is calculated at each SNP by the likeli-

hood function and the results summed across all sites. To determine how to change the donor ratios to explain the data, an
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adjustment term is calculated for every donor/site, and the results summed across sites for each donor. This adjustment factor is then

scaled by an additional parameter and added to each donor’s representation. To determine this scaling value the algorithm employs

a univariate optimizer to maximize the donor likelihood. The adjustment is then applied to the data, and the algorithm repeats the

adjustment/likelihood optimization loop until convergence.

In vitro genome-wide association
Whole-genome sequence data for the 36 donors were jointly-called along with other CIRM-donor whole-genomes to generate a joint

VCF. The joint VCF was filtered to use only high-quality variants for genome-wide analysis. In particular, we required that variants are

bi-allelic, pass VQSR, have a combined read depth >10 across samples, have < 1% chance of being incorrectly called, are present in

more than half the samples in the VCF, have a probability of deviating fromHardy-Weinberg Equilibrium less than 0.001, and that have

minor allele frequency of 0.1 or greater. After choosing the final set of variants that we were going to test, we tested for a linear rela-

tionship between what allele a donor had for each variant and the percent of their cells that were infected by each of the Zika virus

strains.We used in-house R code that leveraged theMatrixQTL package to regress each variant against ZIKV-Ug and ZIKV-PR infec-

tivity. To compute empirical p-values for these associations, we ran adaptive permutation testing for up to 1010 iterations.

CRISPR-Cas9 fitness screen disease gene enrichment
The list of SNaP screen proliferation hits was compared to disease lists curated from various sources. The ASD list was downloaded

from the Simons Foundation Autism Research Initiative (SFARI) website (https://gene.sfari.org/database/human-gene/; accessed

July 18, 2019). The cancer gene censuswas downloaded from theCOSMICwebsite (https://cancer.sanger.ac.uk/census/; accessed

July 18, 2019). Statistical significance of overlap was determined by Fisher’s exact test calculated using the GeneOverlap package in

R. Gene sets were analyzed for GO term statistical overrepresentation using the PANTHER Classification System (http://patherdb.

org) with default settings. The GO biological process complete annotation dataset was used for the RSA-enriched proliferation gene

list, while PANTHERGO-Slim biological process annotation dataset was used for the BAGEL (BF>10) fitness gene set. Fisher’s Exact

test was used for statistical analysis. Proliferation and fitness gene sets were analyzed for KEGG pathway enrichment using the Gene

Set Enrichment Analysis (http://software.broadinstitute.org/gsea).

Data analysis
All data were analyzed and plotted using the Prism version 7.03 software (GraphPad; La Jolla, CA) or R 3.5.3.
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