
James Nemesh, McCarroll Lab

Drop-seq core computational protocol

v1.0; May 15, 2015; page 1

Drop-seq Core Computational Protocol

version 1.0.1 (6/11/15)

James Nemesh

Steve McCarroll’s lab, Harvard Medical School

Introduction

The following is a manual for using the software we have written for processing Drop-seq sequence

data into a “digital expression matrix” that will contain integer counts of the number of transcripts for

each gene, in each cell. This software pipeline performs many analyses including massive

de-multiplexing of the data, alignment of reads to a reference genome, and processing of cellular and

molecular barcodes.

Drop-seq sequencing libraries produce paired-end reads: read 1 contains both a cell barcode and a

molecular barcode (also known as a UMI); read 2 is aligned to the reference genome. This document

provides step-by-step instructions for using the software we have developed to convert these

sequencing reads into a digital expression matrix that contains integer counts of the number of

transcripts for each gene, in each cell.

We may release updates to this manual as we learn from users’ experiences. If a revision simply

contains additional hints or advice or detail, then we will update the date on the protocol but not the

version number. Whenever we implement a substantive change to the software or protocol, we will

increment the version number.

We hope this is helpful and that you are soon generating exciting data with Drop-seq.

Drop-seq Software and Hardware Requirements

The Drop-seq software provided is implemented entirely in Java. This means it will run on a huge

number of devices that are capable of running Java, from large servers to laptops. We require 4

gigabytes of memory for each program to run, which is also sufficient for Picard programs we use as

part of alignment and analysis. Disk space will be determined by your data size plus the meta-data

and aligner index. 50 gigabytes of disk space will be sufficient to store our meta data plus a STAR

index.

Overview of Alignment

The raw reads from the sequencer must be converted into a Picard-queryname-sorted BAM file for

each library in the sequencer run. Since there are many sequencers and pipelines available to do

this, we leave this step to the user. For example, we use either Picard IlluminaBasecallsToSam

http://broadinstitute.github.io/picard/command-line-overview.html#IlluminaBasecallsToSam

James Nemesh, McCarroll Lab

Drop-seq core computational protocol

v1.0; May 15, 2015; page 2

(preceded by Picard ExtractIlluminaBarcodes for a library with sample barcodes); or Illumina’s

bcl2fastq followed by Picard FastqToSam. Once you have an unmapped, queryname-sorted BAM, you

can follow this set of steps to align your raw reads and create a BAM file that is suitable to produce

digital gene expression (DGE) results.

1. Unmapped BAM -> aligned and tagged BAM

a. Tag cell barcodes

b. Tag molecular barcodes

c. Trim 5’ primer sequence

d. Trim 3’ polyA sequence

e. SAM -> Fastq

f. STAR alignment

g. Sort STAR alignment in queryname order

h. Merge STAR alignment tagged SAM to recover cell/molecular barcodes

i. Add gene/exon and other annotation tags

The next sections will explain the metadata needed to follow this workflow, as well as explain each of

the programs that have been developed to run these steps. Some of these programs are developed

by us, and others take advantage of existing Picard Tools or aligners like STAR.

Metadata

To follow this set of processes from raw unaligned reads to an aligned BAM, it’s necessary to have a

number of different metadata files. These provide information about the sequence of the organism(s)

you’re running your experiment on, as well as genomic features like genes,transcripts, and exons that

help extract DGE data from the reads.

We organize our metadata using a set of conventions we suggest you follow, as it makes it easier to

keep track of what files are used for particular processes. In the software section, we’ll refer to these

files using these conventions.

The first convention is that we establish a root name for all of our files that encodes information

about the organism and the genome build used to derive that metadata. For example, mm10 is the

Dec. 2011 Mus musculus assembly. All files for mouse use this as the root name, followed by a “.”,

then the type of file.

metadata file types:

● fasta: The reference sequence of the organism. Needed for most aligners.

http://broadinstitute.github.io/picard/command-line-overview.html#ExtractIlluminaBarcodes
http://support.illumina.com/downloads/bcl2fastq_conversion_software_184.html
http://broadinstitute.github.io/picard/command-line-overview.html#FastqToSam
http://broadinstitute.github.io/picard/
https://github.com/alexdobin/STAR/releases

James Nemesh, McCarroll Lab

Drop-seq core computational protocol

v1.0; May 15, 2015; page 3

● dict: A dictionary file as generated by Picard’s CreateSequenceDictionary. Needed for Picard

Tools.

● gtf: The principle file to determine the location of genomic features like genes, transcripts,

and exons. Many other metadata files we use derive from this original file. We download our

GTF files from ensembl, which has a handy description of the file format here. Ensembl has a

huge number of prepared GTF files for a variety of organisms here.
● refFlat: This file contains a subset of the the same information in the GTF file in a different

format. Picard tools like the refFlat format, so we require this as well. To make life easy, we

provide a program ConvertToRefFlat that can convert files from GTF format to refFlat for you.

● genes.intervals: The genes from the GTF file in interval list format. This file is optional, and

useful if you want to go back to your BAM later to see what gene(s) a read aligns to.

● exons.intervals: The exons from the GTF file in interval list format. This file is optional, and

useful if you want to go back to your BAM and view what exon(s) a read aligns to.

● rRNA.intervals: The locations of ribosomal RNA in interval list format. This file is optional, but

we find it useful to later assess how much of a dropseq library aligns to rRNA.

● reduced.gtf: This file contains a subset of the information in the GTF file, but in a far more

human readable format. This file is optional, but can be generated easily by the supplied

ReduceGTF program that will take a GTF file as input.

On the Drop-Seq website you will find a set of pre-made meta data for human, mouse and

human/mouse experiments. In a later release of this software we’ll provide you with the tools to

generate metadata for the organism(s) of your choice.

Alignment Pipeline Programs

On the Drop-seq website you will find a zipfile containing the programs described below. The zipfile

also contains a script Drop-seq_alignment.sh that executes the process described below. Because of

differences in computing environments, this script is not guaranteed to work for all users. However,

we hope it will serve as an example of how the various programs should be invoked.

TagBamWithReadSequenceExtended

This Drop-seq program extracts bases from the cell/molecular barcode encoding read

(BARCODED_READ), and creates a new BAM tag with those bases on the genome read. By default, we

use the BAM tag XM for molecular barcodes, and XC for cell barcodes, using the TAG_NAME

parameter.

This program is run once per barcode extraction to add a tag. On the first iteration, the cell barcode is

extracted from bases 1-12. This is controlled by the BASE_RANGE option. On the second iteration,

the molecular barcode is extracted from bases 13-20 of the barcode read. This program has an option

to drop a read (DISCARD_READ), which we use after both barcodes have been extracted, which makes

the output BAM have unpaired reads with additional tags.

http://broadinstitute.github.io/picard/command-line-overview.html#CreateSequenceDictionary
http://www.ensembl.org/info/website/upload/gff.html
http://www.ensembl.org/info/data/ftp/index.html
http://samtools.github.io/htsjdk/javadoc/htsjdk/htsjdk/samtools/util/IntervalList.html
http://samtools.github.io/htsjdk/javadoc/htsjdk/htsjdk/samtools/util/IntervalList.html
http://samtools.github.io/htsjdk/javadoc/htsjdk/htsjdk/samtools/util/IntervalList.html

James Nemesh, McCarroll Lab

Drop-seq core computational protocol

v1.0; May 15, 2015; page 4

Additionally, this program has a BASE_QUALITY option, which is the minimum base quality of all bases

of the barcode being extracted. If more than NUM_BASES_BELOW_QUALITY bases falls below this

quality, the read pair is discarded.

Example Cell Barcode:

TagBamWithReadSequenceExtended

INPUT=my_unaligned_data.bam

OUTPUT=unaligned_tagged_Cell.bam

SUMMARY=unaligned_tagged_Cellular.bam_summary.txt

BASE_RANGE=1-12

BASE_QUALITY=10

BARCODED_READ=1

DISCARD_READ=False

TAG_NAME=XC

NUM_BASES_BELOW_QUALITY=1

Example Molecular Barcode:

TagBamWithReadSequenceExtended

INPUT=unaligned_tagged_Cell.bam

OUTPUT=unaligned_tagged_CellMolecular.bam

SUMMARY=unaligned_tagged_Molecular.bam_summary.txt

BASE_RANGE=13-20

BASE_QUALITY=10

BARCODED_READ=1

DISCARD_READ=True

TAG_NAME=XM

NUM_BASES_BELOW_QUALITY=1

FilterBAM:

This Drop-seq program is used to remove reads where the cell or molecular barcode has low quality

bases. During the run of TagBamWithReadSequenceExtended, an XQ tag is added to each read to

represent the number of bases that have quality scores below the BASE_QUALITY threshold. These

reads are then removed from the BAM.

Example:

FilterBAM

TAG_REJECT=XQ

INPUT=unaligned_tagged_CellMolecular.bam

OUTPUT=unaligned_tagged_filtered.bam

TrimStartingSequence

http://en.wikipedia.org/wiki/Phred_quality_score

James Nemesh, McCarroll Lab

Drop-seq core computational protocol

v1.0; May 15, 2015; page 5

This Drop-seq program is one of two sequence cleanup programs designed to trim away any extra

sequence that might have snuck it’s way into the reads. In this case, we trim the SMART Adapter that

can occur 5’ of the read. In our standard run, we look for at least 5 contiguous bases (NUM_BASES) of

the SMART adapter (SEQUENCE) at the 5’ end of the read with no errors (MISMATCHES) , and hard

clip those bases off the read.

Example:

TrimStartingSequence

INPUT=unaligned_tagged_filtered.bam

OUTPUT=unaligned_tagged_trimmed_smart.bam

OUTPUT_SUMMARY=adapter_trimming_report.txt

SEQUENCE=AAGCAGTGGTATCAACGCAGAGTGAATGGG

MISMATCHES=0

NUM_BASES=5

PolyATrimmer

This Drop-seq program is the second sequence cleanup program designed to trim away trailing polyA

tails from reads. It searches for at least 6 (NUM_BASES) contiguous A’s in the read with 0 mismatches

(MISMATCHES), and hard clips the read to remove these bases and all bases 3’ of the polyA run.

Example:

PolyATrimmer

INPUT=unaligned_tagged_trimmed_smart.bam

OUTPUT=unaligned_mc_tagged_polyA_filtered.bam

OUTPUT_SUMMARY=polyA_trimming_report.txt

MISMATCHES=0

NUM_BASES=6

SamToFastq

Now that your data has had the cell and molecular barcodes extracted, the reads have been cleaned

of SMARTSeq primer and polyA tails, and the data is now unpaired reads, it’s time to align. To do this,

we extract the FASTQ files using Picard’s SamToFastq program.

Example:

java -Xmx4g -jar /path/to/picard/picard.jar SamToFastq

INPUT=unaligned_mc_tagged_polyA_filtered.bam

FASTQ=unaligned_mc_tagged_polyA_filtered.fastq

Alignment - STAR

We use STAR as our RNA aligner. The manual for STAR can be found here. There are many potential

aligners one could use at this stage, and it’s possible to substitute in your lab’s favorite. We haven’t

http://broadinstitute.github.io/picard/command-line-overview.html#SamToFastq
https://github.com/alexdobin/STAR/releases
https://github.com/alexdobin/STAR/blob/master/doc/STARmanual.pdf

James Nemesh, McCarroll Lab

Drop-seq core computational protocol

v1.0; May 15, 2015; page 6

tested other aligners in methodical detail, but all should produce valid BAM files that can be plugged

into the rest of the process detailed here.

If you’re unsure how to create an indexed reference for STAR, please read the STAR manual.

Below is a minimal invocation of STAR. Since STAR contains a huge number of options to tailor

alignment to a library and trade off sensitivity vs specificity, you can alter the default settings of the

algorithm to your liking, but we find the defaults work reasonably well for Drop-seq. Be aware that

STAR requires roughly 30 gigabytes of memory to align a single human sized genome, and 60

gigabytes

for our human/mouse reference.

Example:

/path/to/STAR/STAR

--genomeDir /path/to/STAR_REFERENCE

--readFilesIn unaligned_mc_tagged_polyA_filtered.fastq

--outFileNamePrefix star

SortSam

This picard program is invoked after alignment, to guarantee that the output from alignment is sorted

in queryname order. As a side bonus, the output file is a BAM (compressed) instead of SAM

(uncompressed.)

Example:

java -Xmx4g -jar /path/to/picard/picard.jar SortSam

I=starAligned.out.sam

O=aligned.sorted.bam

SO=queryname

MergeBamAlignment

This Picard program merges the sorted alignment output from STAR (ALIGNED_BAM) with the

unaligned BAM that had been previously tagged with molecular/cell barcodes (UNMAPPED_BAM).

This recovers the BAM tags that were “lost” during alignment. The REFERENCE_SEQUENCE argument

refers to the fasta metadata file.

We ignore secondary alignments, as we want only the best alignment from STAR (or another aligner),

instead of assigning a single sequencing read to multiple locations on the genome.

Example:

java -Xmx4g -jar /path/to/picard/picard.jar MergeBamAlignment

REFERENCE_SEQUENCE=my_fasta.fasta

UNMAPPED_BAM=unaligned_mc_tagged_polyA_filtered.bam

ALIGNED_BAM=aligned.sorted.bam

OUTPUT=merged.bam

INCLUDE_SECONDARY_ALIGNMENTS=false

http://broadinstitute.github.io/picard/command-line-overview.html#SortSam

James Nemesh, McCarroll Lab

Drop-seq core computational protocol

v1.0; May 15, 2015; page 7

PAIRED_RUN=false

TagReadWithGeneExon

This is a Drop-seq program that adds a BAM tag “GE” onto reads when the read overlaps the exon of a

gene. This tag contains the name of the gene, as reported in the annotations file. You can use either a

GTF or a RefFlat annotation file with this program, depending on what annotation data source you

find most useful. This is used later when we extract digital gene expression (DGE) from the BAM.

Example:

TagReadWithGeneExon

I=merged.bam

O=star_gene_exon_tagged.bam

ANNOTATIONS_FILE=${refFlat}

TAG=GE

End of Alignment

At this point, the alignment is completed, and your raw reads have been changed from paired reads

to single end reads with the cell and molecular barcodes extracted, cleaned up, aligned, and prepared

for DGE extraction.

Going with the flow - using Unix pipes to simplify alignment

If you’re on a Unix or OS X operating system, you may be familiar with pipes. Drop-seq programs

extend the Picard API, and so like Picard are able to use pipes to redirect output from one program to

the next. Why is this useful? It’s a little bit faster, but more importantly it saves a significant amount

of disk space by not generating a large number of temporary files, as the examples above have. It also

simplifies writing pipelines, as there are fewer named files - intermediate data flows through the

pipeline without being saved. The tradeoff is that executing several programs in a pipeline requires

more RAM and more processing power, so if your computer does not have a lot of RAM and lots of

processors, this might not be useful.

There are some limitations to the amount of pipelining that can be done, because some files must be

read more than once, and because STAR does not have the ability to write to standard output. The

script Drop-seq_alignment.sh has an option (-p) that runs the programs in pipelines to the degree that

is possible. If you are interested in using pipes, you can try this option, or examine the script to see

what steps can be connected via pipes.

Overview of DGE extraction

http://en.wikipedia.org/wiki/Pipeline_%28Unix%29
http://sourceforge.net/p/picard/wiki/Main_Page/#q-can-picard-programs-read-from-stdin-and-write-to-stdout
http://sourceforge.net/p/picard/wiki/Main_Page/#q-can-picard-programs-read-from-stdin-and-write-to-stdout

James Nemesh, McCarroll Lab

Drop-seq core computational protocol

v1.0; May 15, 2015; page 8

To digitally count gene transcripts, a list of UMIs in each gene, within each cell, is assembled, and
UMIs within edit distance = 1 are merged together. The total number of unique UMI sequences is
counted, and this number is reported as the number of transcripts of that gene for a given cell.

Digital Gene Expression

Extracting Digital Gene Expression (DGE) data from an aligned library is done using the Drop-seq

program DigitalExpression. The input to this program is the aligned BAM from the alignment

workflow. There are two outputs available: the primary is the DGE matrix, with each a row for each

gene, and a column for each cell. The secondary analysis is a summary of the DGE matrix on a per-cell

level, indicating the number of genes and transcripts observed.

Primary Output Example:

GENE ATCAGGGACAGA AGGGAAAATTGA TTGCCTTACGCG TGGCGAAGAGAT TACAATTAAGGC

LOXL4 0 0 0 0 0

PYROXD2 1 0 1 1 0

HPS1 23 12 9 8 3

CNNM1 0 2 1 0 0

GOT1 22 6 7 9 3

Summary Output Example:

CELL_BARCODE NUM_GENES NUM_TRANSCRIPTS

ATCAGGGACAGA 12128 232831

AGGGAAAATTGA 12161 185418

TTGCCTTACGCG 10761 173547

TGGCGAAGAGAT 10036 108545

TACAATTAAGGC 9889 99771

CTAAGTAGCTTT 9244 91563

DGE Extraction Options:

There are a large number of options in the DGE program, as we’ve performed large amounts of

experimentation with the outputs to this program. Most of these parameters have default settings,

and are the correct setting for a standard Drop-seq experiment. Outlined below are some of the

parameters that you might change.

READ_MQ The minimum map quality of a read to be used in the DGE calculation. For aligners like

STAR, the default (10) is higher than what’s needed to eliminate all multi-mapping reads. If you use a

different aligner, you might want to set a different threshold.

EDIT_DISTANCE. By default we collapse UMI barcodes with a hamming distance of 1.

RARE_UMI_FILTER_THRESHOLD This is an implementation of the rare UMI filter implemented by

Islam, et al. We leave this off by default, and use edit distance collapse instead. If desired, one can

set EDIT_DISTANCE=0 and enable this filter instead at some threshold, like 0.01.

http://www.nature.com/nmeth/journal/v11/n2/abs/nmeth.2772.html

James Nemesh, McCarroll Lab

Drop-seq core computational protocol

v1.0; May 15, 2015; page 9

Options for selecting sets of cells

When running DGE, we don’t select every cell barcode observed. This is because the aligned BAM can

contain hundreds of thousands of cell barcodes; most reads will be on either STAMPs (beads exposed

to a cell in droplets) or “empties” (beads that were exposed only to ambient RNA in droplets). There

will also be a lot of cell barcodes with just a handful of reads. Because a huge matrix might be difficult

to work with, these options limit the number of cell barcodes that are emitted by DGE extraction. You

must use one of these options.

MIN_NUM_GENES_PER_CELL. DigitalExpression runs a single iteration across all data, and selects

cells that have at least this many genes.

MIN_NUM_TRANSCRIPTS_PER_CELL. DigitalExpression runs a single iteration across all data, and

selects cells that have at least this many transcripts.

NUM_CORE_BARCODES. DigitalExpression counts the number of reads per cell barcode (thresholded

by READ_MQ), and only includes cells that have at least this number of reads.

CELL_BC_FILE. Instead of iterating over the BAM and discovering what cell barcodes should be used,

override this with a specific subset of cell barcodes in a text file. This file has no header and a single

column, containing one cell barcode per line. Since this option doesn’t have to iterate through the

BAM to select barcodes, DGE extraction is significantly faster when using this option.

Example:

In this example, we extract the DGE for the top 100 most commonly occurring cell barcodes in the

aligned BAM.

DigitalExpression

I=out_gene_exon_tagged.bam

O=out_gene_exon_tagged.dge.txt.gz

SUMMARY=out_gene_exon_tagged.dge.summary.txt

NUM_CORE_BARCODES=100

Cell Selection

A key question to answer for your data set is how many cells you want to extract from your BAM.

One way to estimate this is to extract the number of reads per cell, then plot the cumulative

distribution of reads and select the “knee” of the distribution.

We provide a tool to extract the reads per cell barcode in the Drop-seq software called

BAMTagHistogram. This extracts the number of reads for any BAM tag in a BAM file, and is a general

purpose tool you can use for a number of purposes. For this purpose, we extract the cell tag “XC”:

James Nemesh, McCarroll Lab

Drop-seq core computational protocol

v1.0; May 15, 2015; page 10

Example:

BAMTagHistogram

I=out_gene_exon_tagged.bam

O=out_cell_readcounts.txt.gz

TAG=XC

Once we run this program, a little bit of R code can create a cumulative distribution plot. Here’s an

example using the 100 cells data from the Drop-seq initial publication (Figures 3C and 3D):

a=read.table("100cells_numReads_perCell_XC_mq_10.txt.gz", header=F, stringsAsFactors=F)

x=cumsum(a$V1)

x=x/max(x)

plot(1:length(x), x, type='l', col="blue", xlab="cell barcodes sorted by number of reads [descending]",

ylab="cumulative fraction of reads", xlim=c(1,500))

`

In this example, the number of STAMPs are the number of cell barcodes to the left of the inflection

point; to the right of the inflection point are the empty beads that have only been exposed to ambient

RNA. Figure S3A of Macosko et al., 2015 provides additional justification and explanation for how we

identify the number of cells sequenced.

James Nemesh, McCarroll Lab

Drop-seq core computational protocol

v1.0; May 15, 2015; page 11

Conclusion

With successful execution of our software you have hopefully transformed a pile of hundreds of

millions of sequence reads into a digital expression matrix that has genome-wide expression

measurements (digital counts) for each gene in each individual cell.

What to do next? We expect analysis of massive single-cell expression data to become a lively field.

We think very strongly of the Seurat package developed by our colleague Rahul Satija. We used

Seurat to perform all of the downstream analyses (cell clustering, etc) in the Cell paper. Seurat is

available on Rahul’s web site (http://www.satijalab.org/seurat.html), where Rahul will also have

protocols for the specific analyses in the paper

But what if everything doesn’t go perfectly?

One of the big challenges with releasing a new software toolkit to the world is that people will always

do things you didn’t anticipate, with data sets you never imagined. While we feel the Drop-seq

software produces the computationally correct (at least to our intentions) answers, it’s possible that

you will discover a bug, or documentation of a particular software parameter will be unclear.

If you find part of this document unclear, let us know and we’ll do our best to update it and add

clarity. If parameters of our software have unclear documentation, let us know which ones are

unclear, and we’ll do our best to buff up those descriptions.

If you run into software behavior you think is a bug, then you can help to be part of the solution. To

do this, you’ll need to give us the following information

● The program you were running, and the exact command line arguments you supplied to that

program

● A small test data set that can replicate the problem you observed

● The behavior that you think was faulty, and if possible what you expected to see. This can be

very useful when a computation produces an answer that doesn’t make sense.

http://www.satijalab.org/seurat.html

