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Introduction 

 

The following is a manual for using the software we have written for processing Drop-seq sequence 

data into a “digital expression matrix” that will contain integer counts of the number of transcripts for 

each gene, in each cell.  This software pipeline performs many analyses including massive 

de-multiplexing of the data, alignment of reads to a reference genome, and processing of cellular and 

molecular barcodes. 

 

Drop-seq sequencing libraries produce paired-end reads: read 1 contains both a cell barcode and a 

molecular barcode (also known as a UMI); read 2 is aligned to the reference genome.  This document 

provides step-by-step instructions for using the software we have developed to convert these 

sequencing reads into a digital expression matrix that contains integer counts of the number of 

transcripts for each gene, in each cell. 

 

We may release updates to this manual as we learn from users’ experiences.  If a revision simply 

contains additional hints or advice or detail, then we will update the date on the protocol but not the 

version number.  Whenever we implement a substantive change to the software or protocol, we will 

increment the version number.  

 

We hope this is helpful and that you are soon generating exciting data with Drop-seq. 

 

 

Drop-seq Software and Hardware Requirements 

The Drop-seq software provided is implemented entirely in Java.  This means it will run on a huge 

number of devices that are capable of running Java, from large servers to laptops.  We require 4 

gigabytes of memory for each program to run, which is also sufficient for Picard programs we use as 

part of alignment and analysis.  Disk space will be determined by your data size plus the meta-data 

and aligner index.  50 gigabytes of disk space will be sufficient to store our meta data plus a STAR 

index. 

 

Overview of Alignment 

 

The raw reads from the sequencer must be converted into a Picard-queryname-sorted BAM file for 

each library in the sequencer run.    Since there are many sequencers and pipelines available to do 

this, we leave this step to the user.  For example, we use either Picard IlluminaBasecallsToSam 

http://broadinstitute.github.io/picard/command-line-overview.html#IlluminaBasecallsToSam
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(preceded by Picard ExtractIlluminaBarcodes for a library with sample barcodes); or Illumina’s 

bcl2fastq followed by Picard FastqToSam.  Once you have an unmapped, queryname-sorted BAM, you 

can follow this set of steps to align your raw reads and create a BAM file that is suitable to produce 

digital gene expression (DGE) results. 

 

1. Unmapped BAM -> aligned and tagged BAM 

a. Tag cell barcodes 

b. Tag molecular barcodes 

c. Trim 5’ primer sequence 

d. Trim 3’ polyA sequence 

e. SAM -> Fastq 

f. STAR alignment 

g. Sort STAR alignment in queryname order 

h. Merge STAR alignment tagged SAM to recover cell/molecular barcodes 

i. Add gene/exon and other annotation tags 

 

The next sections will explain the metadata needed to follow this workflow, as well as explain each of 

the programs that have been developed to run these steps.  Some of these programs are developed 

by us, and others take advantage of existing Picard Tools or aligners like STAR. 
 

 

Metadata 

To follow this set of processes from raw unaligned reads to an aligned BAM, it’s necessary to have a 

number of different metadata files.  These provide information about the sequence of the organism(s) 

you’re running your experiment on, as well as genomic features like genes,transcripts, and exons that 

help extract DGE data from the reads. 

 

We organize our metadata using a set of conventions we suggest you follow, as it makes it easier to 

keep track of what files are used for particular processes.  In the software section, we’ll refer to these 

files using these conventions. 

 

The first convention is that we establish a root name for all of our files that encodes information 

about the organism and the genome build used to derive that metadata.  For example, mm10 is the 

Dec. 2011 Mus musculus assembly.  All files for mouse use this as the root name, followed by a “.”, 

then the type of file. 

 

metadata file types: 

 

● fasta: The reference sequence of the organism.  Needed for most aligners. 

http://broadinstitute.github.io/picard/command-line-overview.html#ExtractIlluminaBarcodes
http://support.illumina.com/downloads/bcl2fastq_conversion_software_184.html
http://broadinstitute.github.io/picard/command-line-overview.html#FastqToSam
http://broadinstitute.github.io/picard/
https://github.com/alexdobin/STAR/releases
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● dict: A dictionary file as generated by Picard’s CreateSequenceDictionary.  Needed for Picard 

Tools. 

● gtf: The principle file to determine the location of genomic features like genes, transcripts, 

and exons.  Many other metadata files we use derive from this original file.  We download our 

GTF files from ensembl, which has a handy description of the file format here.  Ensembl has a 

huge number of prepared GTF files for a variety of organisms here. 
● refFlat: This file contains a subset of the the same information in the GTF file in a different 

format.  Picard tools like the refFlat format, so we require this as well.  To make life easy, we 

provide a program ConvertToRefFlat that can convert files from GTF format to refFlat for you. 

● genes.intervals: The genes from the GTF file in interval list format.  This file is optional, and 

useful if you want to go back to your BAM later to see what gene(s) a read aligns to. 

● exons.intervals: The exons from the GTF file in interval list format. This file is optional, and 

useful if you want to go back to your BAM and view what exon(s) a read aligns to.  

● rRNA.intervals: The locations of ribosomal RNA in interval list format. This file is optional, but 

we find it useful to later assess how much of a dropseq library aligns to rRNA.  

● reduced.gtf: This file contains a subset of the information in the GTF file, but in a far more 

human readable format.  This file is optional, but can be generated easily by the supplied 

ReduceGTF program that will take a GTF file as input. 

 

On the Drop-Seq website you will find a set of pre-made meta data for human, mouse and 

human/mouse experiments.  In a later release of this software we’ll provide you with the tools to 

generate metadata for the organism(s) of your choice. 

 

Alignment Pipeline Programs 

 

On the Drop-seq website you will find a zipfile containing the programs described below.  The zipfile 

also contains a script Drop-seq_alignment.sh that executes the process described below.  Because of 

differences in computing environments, this script is not guaranteed to work for all users.  However, 

we hope it will serve as an example of how the various programs should be invoked. 

  

TagBamWithReadSequenceExtended 

This Drop-seq program extracts bases from the cell/molecular barcode encoding read 

(BARCODED_READ), and creates a new BAM tag with those bases on the genome read.  By default, we 

use the BAM tag XM for molecular barcodes, and XC for cell barcodes, using the TAG_NAME 

parameter. 

 

This program is run once per barcode extraction to add a tag.  On the first iteration, the cell barcode is 

extracted from bases 1-12.  This is controlled by the BASE_RANGE option.  On the second iteration, 

the molecular barcode is extracted from bases 13-20 of the barcode read.  This program has an option 

to drop a read (DISCARD_READ), which we use after both barcodes have been extracted, which makes 

the output BAM have unpaired reads with additional tags.  

 

http://broadinstitute.github.io/picard/command-line-overview.html#CreateSequenceDictionary
http://www.ensembl.org/info/website/upload/gff.html
http://www.ensembl.org/info/data/ftp/index.html
http://samtools.github.io/htsjdk/javadoc/htsjdk/htsjdk/samtools/util/IntervalList.html
http://samtools.github.io/htsjdk/javadoc/htsjdk/htsjdk/samtools/util/IntervalList.html
http://samtools.github.io/htsjdk/javadoc/htsjdk/htsjdk/samtools/util/IntervalList.html
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Additionally, this program has a BASE_QUALITY option, which is the minimum base quality of all bases 

of the barcode being extracted.  If more than NUM_BASES_BELOW_QUALITY bases falls below this 

quality, the read pair is discarded.  

 

Example Cell Barcode: 

TagBamWithReadSequenceExtended 

INPUT=my_unaligned_data.bam  

OUTPUT=unaligned_tagged_Cell.bam  

SUMMARY=unaligned_tagged_Cellular.bam_summary.txt  

BASE_RANGE=1-12   

BASE_QUALITY=10   

BARCODED_READ=1   

DISCARD_READ=False   

TAG_NAME=XC   

NUM_BASES_BELOW_QUALITY=1 

 

Example Molecular Barcode: 

TagBamWithReadSequenceExtended 

INPUT=unaligned_tagged_Cell.bam  

OUTPUT=unaligned_tagged_CellMolecular.bam  

SUMMARY=unaligned_tagged_Molecular.bam_summary.txt  

BASE_RANGE=13-20   

BASE_QUALITY=10   

BARCODED_READ=1   

DISCARD_READ=True   

TAG_NAME=XM   

NUM_BASES_BELOW_QUALITY=1  

 

FilterBAM: 

This Drop-seq program is used to remove reads where the cell or molecular barcode has low quality 

bases.  During the run of TagBamWithReadSequenceExtended, an XQ tag is added to each read to 

represent the number of bases that have quality scores below the BASE_QUALITY threshold. These 

reads are then removed from the BAM. 

 

Example: 

FilterBAM 

TAG_REJECT=XQ 

INPUT=unaligned_tagged_CellMolecular.bam 

OUTPUT=unaligned_tagged_filtered.bam 

 

 

TrimStartingSequence 

http://en.wikipedia.org/wiki/Phred_quality_score
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This Drop-seq program is one of two sequence cleanup programs designed to trim away any extra 

sequence that might have snuck it’s way into the reads.  In this case, we trim the SMART Adapter that 

can occur 5’ of the read.  In our standard run, we look for at least 5 contiguous bases (NUM_BASES) of 

the SMART adapter (SEQUENCE) at the 5’ end of the read with no errors (MISMATCHES) , and hard 

clip those bases off the read. 

 

Example: 

TrimStartingSequence 

INPUT=unaligned_tagged_filtered.bam 

OUTPUT=unaligned_tagged_trimmed_smart.bam  

OUTPUT_SUMMARY=adapter_trimming_report.txt  

SEQUENCE=AAGCAGTGGTATCAACGCAGAGTGAATGGG  

MISMATCHES=0  

NUM_BASES=5  

 

 

PolyATrimmer 

This Drop-seq program is the second sequence cleanup program designed to trim away trailing polyA 

tails from reads.  It searches for at least 6 (NUM_BASES) contiguous A’s in the read with 0 mismatches 

(MISMATCHES), and hard clips the read to remove these bases and all bases 3’ of the polyA run. 

 

Example: 

PolyATrimmer 

INPUT=unaligned_tagged_trimmed_smart.bam  

OUTPUT=unaligned_mc_tagged_polyA_filtered.bam  

OUTPUT_SUMMARY=polyA_trimming_report.txt  

MISMATCHES=0  

NUM_BASES=6 

 

SamToFastq 

Now that your data has had the cell and molecular barcodes extracted, the reads have been cleaned 

of SMARTSeq primer and polyA tails, and the data is now unpaired reads, it’s time to align.  To do this, 

we extract the FASTQ files using Picard’s SamToFastq program.  

 

Example: 

java -Xmx4g -jar /path/to/picard/picard.jar SamToFastq  

INPUT=unaligned_mc_tagged_polyA_filtered.bam 

FASTQ=unaligned_mc_tagged_polyA_filtered.fastq 

 

Alignment - STAR 

We use STAR as our RNA aligner.  The manual for STAR can be found here. There are many potential 

aligners one could use at this stage, and it’s possible to substitute in your lab’s favorite.  We haven’t 

http://broadinstitute.github.io/picard/command-line-overview.html#SamToFastq
https://github.com/alexdobin/STAR/releases
https://github.com/alexdobin/STAR/blob/master/doc/STARmanual.pdf
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tested other aligners in methodical detail, but all should produce valid BAM files that can be plugged 

into the rest of the process detailed here. 

 

If you’re unsure how to create an indexed reference for STAR, please read the STAR manual. 

Below is a minimal invocation of STAR.  Since STAR contains a huge number of options to tailor 

alignment to a library and trade off sensitivity vs specificity, you can alter the default settings of the 

algorithm to your liking, but we find the defaults work reasonably well for Drop-seq.  Be aware that 

STAR requires roughly 30 gigabytes of memory to align a single human sized genome, and 60 

gigabytes  

for our human/mouse reference. 

Example: 

/path/to/STAR/STAR   

--genomeDir /path/to/STAR_REFERENCE   

--readFilesIn unaligned_mc_tagged_polyA_filtered.fastq   

--outFileNamePrefix star  

 

SortSam 

This picard program is invoked after alignment, to guarantee that the output from alignment is sorted 

in queryname order.  As a side bonus, the output file is a BAM (compressed) instead of SAM 

(uncompressed.) 

 

Example: 

java -Xmx4g -jar /path/to/picard/picard.jar SortSam  

I=starAligned.out.sam  

O=aligned.sorted.bam  

SO=queryname 

 

MergeBamAlignment 

This Picard program merges the sorted alignment output from STAR (ALIGNED_BAM) with the 

unaligned BAM that had been previously tagged with molecular/cell barcodes (UNMAPPED_BAM). 

This recovers the BAM tags that were “lost” during alignment.  The REFERENCE_SEQUENCE argument 

refers to the fasta metadata file.  

 

We ignore secondary alignments, as we want only the best alignment from STAR (or another aligner), 

instead of assigning a single sequencing read to multiple locations on the genome. 

 

Example: 

java -Xmx4g -jar /path/to/picard/picard.jar MergeBamAlignment  

REFERENCE_SEQUENCE=my_fasta.fasta  

UNMAPPED_BAM=unaligned_mc_tagged_polyA_filtered.bam 

ALIGNED_BAM=aligned.sorted.bam 

OUTPUT=merged.bam  

INCLUDE_SECONDARY_ALIGNMENTS=false  

http://broadinstitute.github.io/picard/command-line-overview.html#SortSam
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PAIRED_RUN=false 

 

TagReadWithGeneExon 

This is a Drop-seq program that adds a BAM tag “GE” onto reads when the read overlaps the exon of a 

gene.  This tag contains the name of the gene, as reported in the annotations file. You can use either a 

GTF or a RefFlat annotation file with this program, depending on what annotation data source you 

find most useful. This is used later when we extract digital gene expression (DGE) from the BAM.  

 

 

Example: 

TagReadWithGeneExon 

I=merged.bam  

O=star_gene_exon_tagged.bam 

ANNOTATIONS_FILE=${refFlat}  

TAG=GE 

 

End of Alignment 

At this point, the alignment is completed, and your raw reads have been changed from paired reads 

to single end reads with the cell and molecular barcodes extracted, cleaned up, aligned, and prepared 

for DGE extraction. 

 

Going with the flow - using Unix pipes to simplify alignment  

If you’re on a Unix or OS X operating system, you may be familiar with pipes.  Drop-seq programs 

extend the Picard API, and so like Picard are able to use pipes to redirect output from one program to 

the next.  Why is this useful?  It’s a little bit faster, but more importantly it saves a significant amount 

of disk space by not generating a large number of temporary files, as the examples above have.  It also 

simplifies writing pipelines, as there are fewer named files - intermediate data flows through the 

pipeline without being saved.  The tradeoff is that executing several programs in a pipeline requires 

more RAM and more processing power, so if your computer does not have a lot of RAM and lots of 

processors, this might not be useful. 

 

There are some limitations to the amount of pipelining that can be done, because some files must be 

read more than once, and because STAR does not have the ability to write to standard output.  The 

script Drop-seq_alignment.sh has an option (-p) that runs the programs in pipelines to the degree that 

is possible.  If you are interested in using pipes, you can try this option, or examine the script to see 

what steps can be connected via pipes. 

 

 

Overview of DGE extraction 

http://en.wikipedia.org/wiki/Pipeline_%28Unix%29
http://sourceforge.net/p/picard/wiki/Main_Page/#q-can-picard-programs-read-from-stdin-and-write-to-stdout
http://sourceforge.net/p/picard/wiki/Main_Page/#q-can-picard-programs-read-from-stdin-and-write-to-stdout
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To digitally count gene transcripts, a list of UMIs in each gene, within each cell, is assembled, and 
UMIs within edit distance = 1 are merged together.  The total number of unique UMI sequences is 
counted, and this number is reported as the number of transcripts of that gene for a given cell. 
 

Digital Gene Expression 

Extracting Digital Gene Expression (DGE) data from an aligned library is done using the Drop-seq 

program DigitalExpression.  The input to this program is the aligned BAM from the alignment 

workflow.  There are two outputs available: the primary is the DGE matrix, with each a row for each 

gene, and a column for each cell.  The secondary analysis is a summary of the DGE matrix on a per-cell 

level, indicating the number of genes and transcripts observed.  

 

Primary Output Example: 

GENE ATCAGGGACAGA    AGGGAAAATTGA    TTGCCTTACGCG    TGGCGAAGAGAT    TACAATTAAGGC 

LOXL4 0 0 0 0 0 

PYROXD2 1 0 1 1 0 

HPS1 23 12 9 8 3 

CNNM1 0 2 1 0 0 

GOT1 22 6 7 9 3 

 

Summary Output Example: 

CELL_BARCODE NUM_GENES    NUM_TRANSCRIPTS 

ATCAGGGACAGA 12128 232831 

AGGGAAAATTGA 12161 185418 

TTGCCTTACGCG 10761 173547 

TGGCGAAGAGAT 10036 108545 

TACAATTAAGGC 9889 99771 

CTAAGTAGCTTT 9244 91563 

 

DGE Extraction Options: 

There are a large number of options in the DGE program, as we’ve performed large amounts of 

experimentation with the outputs to this program.  Most of these parameters have default settings, 

and are the correct setting for a standard Drop-seq experiment.  Outlined below are some of the 

parameters that you might change. 

 

READ_MQ The minimum map quality of a read to be used in the DGE calculation.  For aligners like 

STAR, the default (10) is higher than what’s needed to eliminate all multi-mapping reads.  If you use a 

different aligner, you might want to set a different threshold. 

 

EDIT_DISTANCE.  By default we collapse UMI barcodes with a hamming distance of 1. 

 

RARE_UMI_FILTER_THRESHOLD This is an implementation of the rare UMI filter implemented by 

Islam, et al.  We leave this off by default, and use edit distance collapse instead.  If desired, one can 

set EDIT_DISTANCE=0 and enable this filter instead at some threshold, like 0.01.  

http://www.nature.com/nmeth/journal/v11/n2/abs/nmeth.2772.html


James Nemesh, McCarroll Lab 

Drop-seq core computational protocol 

v1.0; May 15, 2015; page 9  

 

Options for selecting sets of cells 

When running DGE, we don’t select every cell barcode observed.  This is because the aligned BAM can 

contain hundreds of thousands of cell barcodes; most reads will be on either STAMPs (beads exposed 

to a cell in droplets) or “empties” (beads that were exposed only to ambient RNA in droplets).  There 

will also be a lot of cell barcodes with just a handful of reads.  Because a huge matrix might be difficult 

to work with, these options limit the number of cell barcodes that are emitted by DGE extraction.  You 

must use one of these options. 

 

MIN_NUM_GENES_PER_CELL.  DigitalExpression runs a single iteration across all data, and selects 

cells that have at least this many genes. 

 

MIN_NUM_TRANSCRIPTS_PER_CELL.  DigitalExpression runs a single iteration across all data, and 

selects cells that have at least this many transcripts. 

 

NUM_CORE_BARCODES.  DigitalExpression counts the number of reads per cell barcode (thresholded 

by READ_MQ), and only includes cells that have at least this number of reads. 

 

CELL_BC_FILE.  Instead of iterating over the BAM and discovering what cell barcodes should be used, 

override this with a specific subset of cell barcodes in a text file.  This file has no header and a single 

column, containing one cell barcode per line.  Since this option doesn’t have to iterate through the 

BAM to select barcodes, DGE extraction is significantly faster when using this option. 

 

Example: 

In this example, we extract the DGE for the top 100 most commonly occurring cell barcodes in the 

aligned BAM. 

 

DigitalExpression 

I=out_gene_exon_tagged.bam 

O=out_gene_exon_tagged.dge.txt.gz 

SUMMARY=out_gene_exon_tagged.dge.summary.txt 

NUM_CORE_BARCODES=100 

 

Cell Selection 

A key question to answer for your data set is how many cells you want to extract from your BAM. 

One way to estimate this is to extract the number of reads per cell, then plot the cumulative 

distribution of reads and select the “knee” of the distribution.  

 

We provide a tool to extract the reads per cell barcode in the Drop-seq software called 

BAMTagHistogram.  This extracts the number of reads for any BAM tag in a BAM file, and is a general 

purpose tool you can use for a number of purposes.  For this purpose, we extract the cell tag “XC”: 
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Example: 

BAMTagHistogram 

I=out_gene_exon_tagged.bam 

O=out_cell_readcounts.txt.gz 

TAG=XC 

 

 

Once we run this program, a little bit of R code can create a cumulative distribution plot.  Here’s an 

example using the 100 cells data from the Drop-seq initial publication (Figures 3C and 3D): 

 

a=read.table("100cells_numReads_perCell_XC_mq_10.txt.gz", header=F, stringsAsFactors=F) 

x=cumsum(a$V1) 

x=x/max(x) 

plot(1:length(x), x, type='l', col="blue", xlab="cell barcodes sorted by number of reads [descending]", 

ylab="cumulative fraction of reads", xlim=c(1,500)) 

` 

 

In this example, the number of STAMPs are the number of cell barcodes to the left of the inflection 

point; to the right of the inflection point are the empty beads that have only been exposed to ambient 

RNA.  Figure S3A of Macosko et al., 2015 provides additional justification and explanation for how we 

identify the number of cells sequenced. 
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Conclusion 

 

With successful execution of our software you have hopefully transformed a pile of hundreds of 

millions of sequence reads into a digital expression matrix that has genome-wide expression 

measurements (digital counts) for each gene in each individual cell.  

 

What to do next?  We expect analysis of massive single-cell expression data to become a lively field. 

We think very strongly of the Seurat package developed by our colleague Rahul Satija.  We used 

Seurat to perform all of the downstream analyses (cell clustering, etc) in the Cell paper.  Seurat is 

available on Rahul’s web site (http://www.satijalab.org/seurat.html), where Rahul will also have 

protocols for the specific analyses in the paper 

 

But what if everything doesn’t go perfectly? 

 

One of the big challenges with releasing a new software toolkit to the world is that people will always 

do things you didn’t anticipate, with data sets you never imagined.  While we feel the Drop-seq 

software produces the computationally correct (at least to our intentions) answers, it’s possible that 

you will discover a bug, or documentation of a particular software parameter will be unclear.  

 

If you find part of this document unclear, let us know and we’ll do our best to update it and add 

clarity.  If parameters of our software have unclear documentation, let us know which ones are 

unclear, and we’ll do our best to buff up those descriptions. 

 

If you run into software behavior you think is a bug, then you can help to be part of the solution.  To 

do this, you’ll need to give us the following information 

 

● The program you were running, and the exact command line arguments you supplied to that 

program 

● A small test data set that can replicate the problem you observed 

● The behavior that you think was faulty, and if possible what you expected to see.  This can be 

very useful when a computation produces an answer that doesn’t make sense. 

http://www.satijalab.org/seurat.html

